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Two-phase flow through porous media in the fixed-contact-line regime
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Universitéde Rennes 1, Ge´osciences Rennes, Campus Beaulieu Baˆtiment 15, 35042 Rennes Cedex, France

E. G. Flekko”y
Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo 3, Norway
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The complete set of equations controlling immiscible two-phase flow through porous media are derived from
first principles under the sole restriction that contact lines between the two fluids and the grain surfaces are not
allowed to migrate irreversibly. Because rough grain surfaces have the ability to trap contact lines over
significant ranges of capillary-pressure variation, such laws are of practical interest. As distinct from previous
coarse-graining work, we explicitly allow for the stretching of the fluid interface, which results in considerable
nonlinearity at the macroscopic scale. The laws are obtained through an asymptotic analysis and have several
new features compared to the standard laws conventionally used in two-phase flow modeling. These include
the need to~i! distinguish between measurable fluxes and the volume-averaged flow;~ii ! allow for flow
induced by the time rate of change of the capillary pressure; and~iii ! include quadratic-force terms in the
generalized Darcy laws when macroscopic-pressure diffusion is slow~as defined herein!.
@S1063-651X~99!01510-X#

PACS number~s!: 81.05.Rm, 47.55.Kf, 47.55.Mh, 47.10.1g
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I. INTRODUCTION

Despite their economic importance, the macroscopic la
controlling immiscible two-phase flow through porous ma
rials such as sedimentary rock remain poorly understo
The reason for this is that the fluid distributions in a sam
change whenever the forces driving the flow change. Si
the fluid distributions define the resistance experienced
each fluid, the transport laws controlling the macrosco
~volume-averaged! flux are, in general, nonlinear an
history-dependent functions of the applied force.

Furthermore, when the saturation levels are changing,
conventional to complete the macroscopic-flow descript
with a relation between the average capillary pressurePc in
each sample and the saturationw @1–3#. The Pc(w) relation
is often taken from static fluid-invasion experiments
which neither fluid forms a connected path across
sample. It is then applied to flow situations where both flu
percolate. Such inconsistent use ofPc(w) is common prac-
tice even to this day.

In the present work, we wish to establish a consist
macroscopic two-phase flow description that connects to
pore-scale physics in a well-defined way. To do so, anal
is limited to the flow regime where history dependence is
important. Such a regime has two requirements:~i! both flu-
ids percolate in the absence of flow, and~ii ! contact lines
between the fluid interface and grain surfaces remain fi
once forces are applied and flow begins. The hysteresi
contact-line movement@4# is behind the need for both o
these requirements. As will be shown, grains with rough s
faces have the ability to pin contact lines over nontriv
ranges of applied force.

We view our contribution as a practical first step toward
more general model in which larger applied-force variatio
are allowed for so that contact lines may irreversibly migra
Unfortunately, there remains much uncertainty associa
PRE 601063-651X/99/60~4!/4285~15!/$15.00
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with the proper continuum boundary conditions near mov
contact lines~see@5# for a review!. Starting from the pore
scale, we underline that, to our knowledge, no work has e
attempted to obtain the macroscopic flow laws when con
lines are free to redistribute.

The standard formulation@1# has three parts:~i! the con-
servation of mass of both fluids;~ii ! a Darcy law for each
fluid; and ~iii ! an assumed macroscopic capillary-press
law Pc(w). When there is a large viscosity contrast betwe
the two fluids such as for air and water, it is common
make the additional assumptions that the two Darcy laws
decoupled and that the air does not move at the macros
~which leads to the so-called Richard’s equation!. Such for-
mulations give a closed set of equations that, along w
stated boundary conditions, are used to make prediction
how fluid saturation and pressure evolve through time in
earth. However, the formulation has never been justifi
through coarse-graining of the pore-scale physics. Incon
tencies in the scheme have been voiced@7# and a central
purpose of this paper is to put the formulation through
careful examination.

In the present work, saturation variations are allowed
by allowing the fluid interface to stretch. The important ro
played by saturation gradients is emphasized. The ana
shows how the usual linear transport laws yield to nonlin
forcing at finite capillary numbere. The linear Darcy laws
emerge ase→0. At this order it is shown that the cross
coupling terms satisfy Onsager reciprocity—a result which
obtained in the context of statistical mechanics in a comp
ion paper@6#.

Existing coarse-graining work for this problem includ
that of Whitaker@8# and Auriault@9,10#. These authors also
restrict analysis to the case of fixed contact lines. Howev
neither treat the important role played by the fluid-interfa
deformation as a function of applied-force levels. Thus, n
ther work resolves any of the questions surrounding the
4285 © 1999 The American Physical Society
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4286 PRE 60S. R. PRIDE AND E. G. FLEKKO”Y
of Pc(w) nor considers the nature of any nonlinearity in t
flow description. From a technical viewpoint, our work
able to go beyond this existing work because we explic
treat the interface displacement.

II. ASSUMPTIONS

Before stating the specific pore-scale boundary va
problem that will be used to obtain the macroscopic laws,
wish to discuss some of the assumptions that go into
model. At the scale of the porous continuum, the only ex
statement that can be made is the conservation of mass o
two fluids. The remaining laws require approximations a
assumptions that at the very least should be clearly st
and internally consistent and would preferably be associa
with some kind of validity condition.

A. Fixed contact lines

We begin with a simple qualitative justification for th
principal approximation of this~and the other existing!
coarse-graining work; namely, that contact lines between
two fluids and the grains can remain fixed as applied for
vary. Is such a flow regime even possible?

Roughness of the solid walls is known to provide o
mechanism for contact-line hysteresis@4#. This mechanism is
illustrated in Fig. 1, which shows a pore channel with a f
asperities representing the surface roughness. In a cha
with flat walls, the contact angleQ determines the equilib
rium curvature of a meniscus~such as meniscusA in the
figure! and thus the local capillary pressurePc . If the capil-
lary pressure were to deviate a small amount from this va
due to externally applied pressures, a meniscus would s
taneously migrate to the right~for a decrease inPc! or to the
left ~for an increase! until an asperity was encountered. Upo
encountering an asperity, the contact lines of a left-mov
meniscus will spontaneously rise up the asperity face, re
the peak, and just as they start to descend they will find
equilibrium contact angle and stop. On the pore scale,
peaks take the form of sharp edges, so the meniscus s
~becomes trapped! essentially right on the edge. If the pre
sure drop increases further, a meniscus~such asB in the
figure! will bulge while its contact lines remain fixed to th
edge until finally its curvature is reduced to where it m
descend to the left at the proper contact angle. Similar thi
can be said for a right-moving meniscus except that the
ternal pressure drop must be lowered and the meniscus~such
asC in the figure! must become more flat in order to ove
come the asperity trap and descend to the right with
proper contact angle. Thus, all meniscii become trapped
asperity edges and can tolerate a certain range ofPc varia-
tion before they migrate away. We now estimate this ran

FIG. 1. A fluid channel with small asperities characterized by
angleua and negligible height.
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On a flat wall the equilibrium value of the interface cu
vature is 1/R52 cosQ/h, whereh is the channel width. This
yields the well-known value for the pressure drop

Pc5
2s

h
cosQ, ~1!

wheres is the surface tension. At the asperities, the wal
tilted by an angleua as shown in the figure so that the wa
orientation of the meniscii is tilted by the same angle relat
to the meniscii on the flat wall. This means that the equil
rium curvature on the left-facing side of an asperity
1/R252 cos(Q2ua)/h while that on the right-facing side is
1/R152 cos(Q1ua)/h. Hence, for meniscii on the edges,Pc
can be in the range

2s cos~Q1ua!

h
<Pc<H 2s cos~Q2ua!/h if Q.ua

2s/h if Q,ua .
~2!

The reason for the two possible upper limits is that ifQ
,ua , then once we arrive atPc52s/h, the curvature is at
its smallest possible valueR2'h/2 so that any further in-
crease in the capillary pressure would cause the meniscu
break off from the wall.

The menisciiB andC in Fig. 1 correspond to the high an
low values of the range~2!. For a trapped meniscus to mov
to the right, the external pressure drop must be lower t
the lowestPc value, while for a meniscus to move to the le
the external pressure must be higher than the high valu
Pc . The fact that these pressures are different is an impor
source of hysteresis.

So a meniscus that entered a channel of widthh at a
capillary pressure close to the equilibrium value of Eq.~1!
will remain trapped on an asperity within the channel un
the order-of-magnitude deviationsDPc of the capillary pres-
sure exceed the range

2s/h,DPc,1s/h. ~3!

This range is nontrivial especially in tight materials lik
rock. For an oil/water meniscus (s5531022 Pa m) trapped
in a 5-micron channel~a sandstone!, the condition is
2104 Pa,DPc,1104 Pa. Note that 104 Pa is the pressure
produced by a one-meter stand of water or a standard ho
hold vacuum cleaner.

Of course, there is a wide distribution of pore widthsh in
real rocks. For an externally fixed value ofPc , we may
expect that a small but finite number of the meniscii throug
out a sample are just at the end of the range~2! so that any
local perturbations in the capillary pressure may lead
spontaneous motion of the contact lines. This is always t
and in this sense our coarse-graining effort can only be c
sidered approximate. Nonetheless, the majority of meni
will be stuck on asperities at pressures well within the ran
~2!.

B. Applied forces

We imagine an initial state in which no flow is occurrin
Forces are then applied and flow begins. The purpose of

n
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subsection is to identify these applied forces as gradient
the average pressures in each sample~or averaging volume!.

Our initial state is defined by both fluids having contin
ous paths across each sample and by the fluids being e
where stationary. In this state, gravity alone is generating
pressure distributions and the fluids have adjusted their
niscii ~all trapped on asperities! to accommodate the pore
scale capillary pressure~we label the two fluids asa and b
throughout the entire paper!,

Pc
o~r !5Pa2Pb1~rb2ra!g•r , ~4!

whereg is the acceleration of gravity,r is the distance vec
tor, andra and rb are the fluid densities. The constant d
ferencePa2Pb is thus the capillary pressure at the arb
trarily selected origin.

To get flow, pressure gradients must be applied. In
earth, for example, we might inject or extract fluids at s
lected places. If flow is occurring in an averaging volum
somewhere ~possibly far removed from the injection
extraction points!, the fluids experience applied pressur
that are different on one side of the volume as compare
the other. In general, the pressure drop of fluida across the
volume will be different from that of fluidb. These pressure
drops are the macroscopic pressure gradients in the the
The injection process will also change the average pres
in each sample and both effects must be properly allow
for.

To fix a concrete image, imagine an averaging volu
that is in the form of a flat slab, say a circular disk wi
radius much greater than thicknessL so that only the bound
ary conditions on the flat faces need to be worried about.
disk is oriented so that the maximum pressure drops are
allel with the axis coordinates. If this disk truly corresponds
to a region within the earth~and not a laboratory sample!,
then the applied-pressure boundary conditions on the
facess56L/2 can be written (f 5a or b)

pf~r !5H p̄f1DPf /21p f
1~r !, s51L/2

p̄f2DPf /21p f
2~r !, s52L/2,

~5!

where

p̄f5
1

Vf
E

V f

pfdV ~6!

is the average pressure throughout the portionV f of the av-
eraging volume occupied by fluidf. TheDPf are the average
pressure drops across the disk so that the functionsp f

6(r )
are the spatial deviations created by pore-scale details o
flow process and which average to zero on each disk fa

We now make the assumption that the average flow in
averaging volume is unaffected by the presence of thep f

6(r )
on the disk faces. These flow-induced deviations play
important role within the sample and must be modeled th
so that the incompressible flow may accelerate and dec
ate through constrictions. Our assumption is that taking th
boundary values to be zero on the disk faces will not aff
the average flow.

This assumption could be formally justified using Gree
functions and the notion that the fluids are multiply co
of
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nected throughout a sample. The qualitative idea is tha
given value of p f

1(r ) ~say positive! in some pore ons
51L/2 has an influence at an interior point that~i! falls off
with distance from the interface, and~ii ! is at least partially
canceled by a negative value coming from some other p
on s51L/2. Thus, for sufficiently thick samples and fo
sufficiently connected fluids~so that a given interior point is
connected to many pores on the disk face without cross
any meniscii! we believe it is evident that the assumption c
be formally justified and we do not pause to do so here
passing, one may note that if this assumption were not va
then standard laboratory flow experiments~in which p f

6

50) would be meaningless for applications to earth pro
lems.

The local ~applied! pressure at every point within
sample can thus be written

pf~r !5 p̄f1
DPf

L
s1p f~r ! ~7!

so that the local~applied! pressure gradient is

“pf~r !5
DPf

L
ŝ1“p f~r ! ~8!

and our assumption is the boundary condition

p f~r !5H 0, s51L/2

0, s52L/2.
~9!

Thus, the applied forces~due to the distant injection proces!
can be modeled within each sample as uniform force de
ties

Ff52
DPf

L
ŝ. ~10!

In order to obtain a theory that lets the material properties
the earth~as well as the distant injection event! fix the values
of Ff acting in each averaging volume, we must next conn
these forces to gradients of the average fluid pressures.

This last step is done using the definition of the derivat
of a volume-averaged quantity@8,11#

“~w f p̄ f !5
1

VE]Ef

npfdS, ~11!

wherew f is the volume fraction of each fluid,

w f~r !5
1

VEV f

dV5
Vf~r !

V
, ~12!

and where]Ef is the portion of the exterior surface of th
averaging volume occupied by fluidf and having normaln.
The saturation gradient is defined

“w f5
1

VE]Ef

ndS ~13!

and thus exists when there is more fluid-f surface area on
one side of a sample as compared to the other.
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For our case of an averaging disk, if the boundary con
tions ~5! and ~9! are used in the definition~11!, we obtain

ŝ•“~w f p̄ f !5 p̄f ŝ•“w f1
DPf

L
F f , ~14!

where the saturation gradient is

ŝ•“w f5
Af

12Af
2

AL
~15!

and whereF f is an external-area measure of saturation

F f5
Af

11Af
2

2A
. ~16!

Here, theAf
6 are the total areas of fluidf on the disk faces

s56L/2 while A is the area of each disk face.
From Eq.~14!, it follows that for arbitrary disk orienta-

tions

w f“ p̄f5F f

DPf

L
ŝ. ~17!

In the following, we assume that

F f>w f . ~18!

Imagine that an averaging disk is sliced parallel to its t
end faces at many points along its length. The area satura
Af /A is then measured on each slice. The condition for
~18! to be a valid estimate ofF f is that such slice saturation
must scatter about the straight line connecting the end-
valuesAf

1/A andAf
2/A. Sedimentary rock will typically sat-

isfy this constraint. One must have large nonsystem
variations of the porosity~e.g., voids that cluster on one sid
of a sample relative to the other! before this assumption
breaks down.

Thus, we may finally write the principal result of th
section,

Ff52“ p̄f . ~19!

In other words, any injection/extraction process that res
in flow is associated with uniform-force densities acting
the fluids in each averaging volume and such forces can
identified as the macroscopic gradient in the average app
pressures. It is the purpose of the macroscopic theory to
vide rules for how thesep̄f are distributed through space an
time.

C. Connection to invasion problems

We finally discuss how the theory developed in this pa
is to be used in the context of a typical three-dimensio
~3D! invasion problem. These comments are essential in
der to understand the goals of the subsequent analysis.

Imagine a situation where fluida is being injected from a
well into an earth initially saturated with fluidb. There might
also be a second well some distance away in which fluidb is
being extracted. If the injection/extraction is stopped af
fluid a has invaded only a small distance into the formatio
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there will be a macroscopic invasion front separating a
gion of partial saturation from the region completely sa
rated by fluidb. The topological nature of this macroscop
invasion front ~e.g., whether it has a fractal dimensio
greater than the Euclidean dimension of 2! is a function of
the nature of the invasion experiment as will be briefly d
cussed below.

For modeling purposes, we now discretize the earth i
3D pixels. Each pixel represents an averaging volume
‘‘sample’’ as discussed in the preceding section. We c
distinguish between three types of pixels:~i! pixels interior
to the macroscopic front in which both fluids percolate,~ii !
pixels exterior to the front that are entirely saturated by flu
b, and~iii ! boundary pixels that contain within them the ma
roscopic front.

If injection were to resume at sufficiently low rates, th
laws that we propose in this paper would be capable of m
eling the flow everywhere throughout the region of inter
pixels. However, the boundary pixels are experienc
contact-line movement and thus obey different laws. Th
the macroscopic front represents a special boundary co
tion surrounding the interior region where our theory appli
We will not consider here the nature of these invasion-fr
boundary conditions, but they are the key quantities that
fine the saturation and saturation gradient of the two-ph
transport backbones being formed within the boundary p
els. Once the initial saturation and saturation gradient
laid down in a pixel, subsequent saturation variations~the
ones modeled in this paper! will be dominated by stretching
of the meniscii with contact lines remaining fixed, as is d
picted in Fig. 2. Thus, the theory of this paper is providi
the rules for how the invading fluid arrives at the evolvin
macroscopic invasion front.

To justify this image of the invasion process, we ma
connection with the 3D drainage experiments of Fretteet al.
@12#. These authors inject a nonwetting fluid at a fixed po
within a 3D porous material that is initially saturated wi
wetting fluid. They visually monitor how the saturatio
structure develops around the injection point and obse
that such structure is a function of the injection rate. At ve
low injection rates~capillary numbere!1024), an irregular

FIG. 2. A saturation state in a small pixel well behind the ma
roscopic invasion front. Fluida is the nonwetting invading fluid.
The meniscii in a state of no applied pressure gradients are den
with solid lines while the meniscii once the drainage is establis
are shown as dashed lines.
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fractal structure develops, while at higher rates (e*1024), a
much more regular ball-like structure is observed. But ev
for the uniform ball structure, the invading fluid occupi
less than half the pore space of the interior region so that
interior pixels are all traversed by both fluids.

This dependence on injection rate can be understoo
follows. At sufficiently low rates, there will always be on
boundary pixel that presents the least capillary resista
~largest percolating pore radius! and the injected fluid will
traverse this least resistant pixel. Since there is quenc
disorder in the material, the spatial location of this lea
resistant boundary pixel at any instant will be random so t
a fractal structure tends to develop~this corresponds to the
invasion percolation model!. As rates increase, multipl
boundary pixels must simultaneously be invaded in orde
accommodate the injected fluid and this is possible beca
many boundary pixels now exceed the capillary-resista
threshhold due to the elevated injection pressure. Thus
injection rates increase, a more regular distribution of bou
ary pixels surrounding the injection point will be invade
and this leads to a more ball-like structure.

The point for our work here is that at any instant it is t
boundary pixels that are always able to provide the le
capillary resistance. The interior pixels have already b
traversed and thus contain meniscii that are necess
trapped on more resistive parts of the pore space. This im
of the invasion process works for either drainage or imb
tion but will ultimately break down at sufficiently high
injection rates.

III. TWO-PHASE FLOW AT THE PORE SCALE

With the above ideas in mind, we now lay out th
boundary-value problem controlling the flow in each aver
ing volume~or interior pixel!. The regionV occupied by an
averaging volume is partitioned into three partsV5Va
1Vb1Vg corresponding to fluida, fluid b, and the solid
grainsg. The surfaces]V f ( f 5a or b) enclosing the fluid
regionsV f also consist of three parts,

]V f5]Ef1]Gf1]F, ~20!

where]Ef is the surface coincident with the external surfa
of the averaging volume~the entrance and exit surfaces!,
]Gf is the surface coincident with the grain surfaces, and]F
is the fluid interface~the meniscii!.

The equations governing the two-phase flow are

“•T f1r fg5r f]vf /]t in V f , ~21!

T f52Pf I1h f@“vf1~“vf !
T# in V f , ~22!

“•vf50 in V f , ~23!

@vf #50; n•va5vz ; n•@T f #5sHn on ]F, ~24!

whereT f is the total stress tensor in the fluid,Pf is the total
pressure,h f is the viscosity,vz is the rate at which the in
terface]F is displacing,H is the interface curvature~as de-
fined in Appendix A!, s is the surface tension, and the brac
ets @ # indicate the change in a field as the interface
traversed froma towardb ~which is the sense of the interfac
n
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normaln). In addition to these boundary conditions on]F,
the no-slip flow conditionvf50 holds on all grain surfaces
]Gf .

As stated, we consider an initial state of no flow in whi
gravity alone produces the static pressure distributi
Pf

o(r )5Pf2r fg•r . This allows the total pressure to be wri
ten

Pf~r ,t !5Pf
o~r !1 p̄f~ t !2Ff~ t !•r1p f~r ,t !, ~25!

whereFf(t) are the uniform-force densities andp̄f(t) are the
uniform pressures applied to each averaging volume by s
distant injection process as discussed in the previous sec

The main role of the static state in the present argumen
to fix an initial position of the fluid interface. For the argu
ment, we assume this interface position is known. On
p̄f(t) andFf(t) are applied, the theory is to supply rules f
how the interface will displace as well as give a comple
solution to the flow problem.

As shown in Fig. 3, we denote the normal displacemen
the interface from its initial position asz. In Appendix A, we
work in the (x,y,z) curvilinear coordinates shown in th
figure to obtain an exact expression for the nonlinear diff
ential operatorH(z). For now, we simply write

H~z!5Ho1h~z!, ~26!

whereHo is the initial curvature~related to the static pres
sures assHo5Pc

o) while the operatorh(z) gives the change
in curvature due to the applied forces. The rate of displa
ment functionvz is given by

vz5n• ẑ]z/]t. ~27!

As seen in the Appendix, when displacement cannot be c
sidered small, the operatorh(z) is extremely nonlinear as ar
the expressions for the interface normaln and tangent vec-
tors tx and ty . Thus, becausez is one of the unknowns, this
two-phase flow problem can be highly nonlinear due to
boundary conditions on]F.

Such nonlinearity means that the response due top̄f can-
not be resolved from that due toFf . However, it will be
shown that for given values of thep̄f , the viscous flow pro-
duced byFf only weakly perturbs the interface in compar
son to the possibly large displacements produced byp̄f .
Thus, the result of the perturbation analysis of the followi
section is that the interface displacement and flow fields
be solved in two steps:~i! apply the p̄f while keepingFf

FIG. 3. The surfacez5z(x,y) represents the position of th
fluid interface at any instant while the initial interface position
denoted byz50. The curvilinear coordinatesx andy denote posi-
tions along the initial interface.
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4290 PRE 60S. R. PRIDE AND E. G. FLEKKO”Y
50 and determine a new interface position, then~ii ! add on
the Ff to determine the flow fields and additional~small!
interface displacements.

To obtain this procedure, the dimensions must first
removed. We allowFa(t) andFb(t) to have different ampli-
tudes and direction, and to vary over time scalestF that are
slow enough that inertial effects~such as capillary waves an
viscous boundary layers! remain negligible. These force
have a characteristic valueF that can be related to the pre
sureDP applied at an injection/extraction point as

F5DP/L, ~28!

where L is a macroscopic length such as the distance
tween an injection point and the distant invasion front. W
take DP as a characteristic measure of thep̄f . Last, we
define a characteristic pore sizel c .

With these identifications, the dimensions are now
moved using the following definitions in which primed field
have their dimensions while unprimed fields do not:

Ff5FFf8 , p̄f5DPp̄f8 ,

vf5
ha

Fl c
2

vf8 , p f5
1

Fl c
p f8 ,

~29!

H5l cH8, z5z8/l c ,

“5l c“8, t5t8/tF .

Thus, the dimensionless-flow problem is defined as

“•tf1Ff50 in V f , ~30!

“•vf50 in V f , ~31!

ta52paI1“va1~“va!T in Va , ~32!

tb52pbI1g@“vb1~“vb!T# in Vb , ~33!

@vf #50 on z5z, ~34!

n•va5xn• ẑ
]z

]t
on z5z, ~35!

n•@tf #•t50 on z5z, ~36!

e$n•@tf #•n1~Fb2Fa!•r%1
e

a
~ p̄a2 p̄b!5h~z! on z5z,

~37!

and is completed by takingp f50 on the external faces o
the averaging volume.

Four dimensionless numbers appear,

e5
Fl c

2

s
, g5

hb

ha
, x5

ha

tFFl c
, a5

l c

L . ~38!

The capillary numbere controls the degree to which th
interface is displaced by viscous forcing~as e→0 the vis-
cous forces are incapable of moving the interface!, the vis-
e

e-
e

-

cosity ratiog controls the amount of viscous coupling acro
the interface~as g→0 such cross-coupling becomes neg
gible!, while the rate numberx is the ratio between the time
a fluid particle spends in a pore and the applied-force va
tion time tF ~asx→0, one can assume the flow is always
the steady state!.

In the following section we perform a perturbation ana
sis usinge as the small parameter. It is thus important
establish careful estimates of the size of the other dimens
less numbers in comparison toe. To do so, we first assume
maximum applied pressure consistent with the fixed cont
line condition of Eq.~3!,

DP&s/l c . ~39!

Next, since the time variation of the macroscopic pressur
due to diffusion, we propose a characteristic relation betw
tF andL of the form

tF5L 2/D5habaL 2/k, ~40!

where D is the two-phase-flow pressure diffusivity of th
porous material. Here, we have assumed fluida to be the
invading fluid and determinedD using our final laws. We
have thatD5k/(haba), whereha is the viscosity of fluid
a, k is the permeability@we do not multiply by theO(1)
relative permeability in this order-of-magnitude estimat#,
and ba5]wa /]Pc and controls how saturation chang
when capillary pressure changes.

Upon introducing these estimates into Eq.~38!, we obtain

a5
l c

L *e and x*
k

sbaL . ~41!

For applied forces that do not migrate contact lines beh
the invasion front~the regime of this paper!, we see thate
can be an extremely small number. Assuming the follow
characteristic valuess;1023 Pa m, ba;1025 Pa21, and
k;10211 m2 ~high permeability!, we find that k/(sba)
51023 m. Thus, for diffusion through high-permeabilit
laboratory samplesL;1021 m, we havex*1022, which
can be consideredO(1) relative toe. However, the situation
of practical interest is when rocks are experiencing diffus
over distances in the earth. For such problems, we ea
enter the regime wherex5O(e), as will be discussed in
detail in the final section.

We will perform the analysis here assumingx5O(1).
The modifications of the final laws for the case wherex
5O(e) will be obvious since all thex dependence will ap-
pear explicitly. Last, the viscosity ratiog will also be taken
asO(1).

IV. ASYMPTOTIC SOLUTION OF THE PORE-SCALE
PROBLEM

In order to arrive at the perturbation scheme in an effici
manner, let us begin by defining, somewhat out of the bl
the leading-order problem ine whenPc5 p̄a2 p̄b acts alone;
i.e., setFf50 in Eqs.~30!–~37! and ignore any term multi-
plied by e. This capillary-pressure problem is defined as

“•t f 0
P 50 in V f o , ~42!
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@vf 0
P #50 on z5zo , ~43!

no•va0
P 5xno• ẑ

]zo

]t
on z5zo , ~44!

no•@tf 0
P #•to50 on z5zo , ~45!

Pc~ t ![ p̄a2 p̄b5h~zo! on z5zo , ~46!

where the superscriptP indicates that these fields are due
capillary pressure alone while the subscript 0 indicates
they are leading order ine. The reason for such a notatio
will be seen shortly. Although we cease to write out“•v
50 and the constitutive laws fort, they are to be understoo
as part of the problem statement.

The key property of these equations is that the differen
equationh(zo)5Pc(t) in the boundary condition~46!, along
with the condition thatzo50 on all contact lines, is suffi-
cient to determine the displacement function

zo5zo„x,y;Pc~ t !… ~47!

which has, in general, a highly nonlinear dependence onPc .
Given this function, the normalno and tangent vectorsto of
z5zo can be determined which permits the flow field excit
by the interface displacement of Eq.~44! to be uniquely de-
termined and expressed in the form

vf 0
P ~r ,t !5F E dxdy

hxhy
ẑ•M ~r ux,y;Pc!

]zo~x,y;Pc!

]Pc
Gx]Pc

]t
.

~48!

This solution is linear in]Pc /]t but extremely nonlinear in
Pc . Upon averaging over the volumeV f o ~i.e., the region of
fluid f in an averaging volume when the interface is az
5zo), we have

^vf 0
P &5xmf

]Pc

]t
, ~49!

where the transport coefficientmf is thus defined as

mf5
1

VEV f o

d3rE dx dy

hxhy
ẑ•M f~r ux,y;Pc!

]zo~x,y;Pc!

]Pc
.

We will discuss the meaning of themf later ~they only exist
in the presence of a saturation gradient!. An important prop-
erty of this flow, if it exists, is that it ceases once the cap
lary pressure ceases to change.

Given these initial results, we now treat the complete fl
problem by means of a perturbation analysis using the c
illary numbere as the small parameter. In order to prope
affectuate the analysis, it is convenient to first define n
surface coordinates (xo ,yo ,zo) attached to the capillary
pressure surfacez5zo determined by Eq.~47! and as shown
in Fig. 4. In these new coordinates, the surfacezo50 corre-
sponds toz5zo in the old coordinates and soẑo5no , x̂o

5txo , and ŷo5tyo .
We start afresh and restate the entire dimensionless-

problem using (xo ,yo ,zo),
at

l

-

p-

w

w

“•tf1Ff50 in V f , ~50!

@vf #50 on zo5zv , ~51!

n•va5xn•S ẑ
]zo

]t
1 ẑo

]zv

]t D on zo5zv , ~52!

n•@tf #•t50 on zo5zv , ~53!

e$n•@tf #•n1~Fb2Fa!•r%1Pc5H~zv! on zo5zv .
~54!

The surfacezo5zv is the final unknown position of the fluid
interface. The subscriptv indicates that this part of the dis
placement is due to viscous flow. The known displacem
vectorẑzo is now to be understood as a function of (xo ,yo).

To obtain asymptotically correct results through all orde
of e, we must first continue the boundary conditions from t
unknown surfacezo5zv to the known surfacezo50 by
means of a Taylor-series development aroundzo50,

@vf #1F ]vf

]zo
Gzv1•••50, ~55!

n•S va1
]va

]zo
zv1••• D5xn•S ẑ

]zo

]t
1 ẑo

]zv

]t D , ~56!

n•S @tf #1F ]tf

]zo
Gzv1••• D •t50, ~57!

en•S @tf #1F ]tf

]zo
Gzv1••• D •n1e~Fb2Fa!•r1Pc5H~zv!.

~58!

All flow fields in these boundary conditions are now bei
evaluated at~or across! zo50. Due to the smoothness of th
low-Reynold’s-number flow, such expansions can be con
ered uniformly valid.

We can at last perform the perturbation expansions
means of the asymptotic series

vf5vf 01evf 11O~e2!, ~59!

FIG. 4. The two sets of surface coordinates and the fluid in
face in three positions: curveA, the initial static-state positionz

50; curveB, the position whenPc5 p̄a2 p̄b acts alone and defined
z5z0 in the initial coordinates orzo50 in the new coordinates
(xo ,yo ,zo); and curveC, the actual position whenPc andFf both
act.
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tf5tf 01etf 11O~e2!, ~60!

zv5ez11O~e2!. ~61!

There is no zeroth-order term forzv because this displace
ment is produced entirely by viscous forces. We also h
the following results from Appendix A concerning the su
face properties ofzo5zv ,

n5 ẑo2e“z11O~e2!, ~62!

tx5 x̂o1ehxo

]z1

]xo
ẑo1O~e2!, ~63!

ty5 ŷo1ehyo

]z1

]yo
ẑo1O~e2!, ~64!

H~zv!5H~0!2e@“2z11j2z1#1O~e2!, ~65!

whereH(0) is the known curvature of the capillary-pressu
surfacezo50. When all of this is inserted into the governin
equations, we obtain a hierarchy of linear subproblems
powers ofe each defined in the same known domainsV f o
and with boundary conditions on the same known surf
zo50.

The e0 flow fields separate into two contributionsvf 0

5vf 0
P 1vf 0

F which derive, respectively, from~i! the capillary-
pressure problem of Eqs.~42!–~46! that has already bee
treated; and~ii ! the Stokes-flow problem given by

“•tf 0
F 1Ff50 in V f o , ~66!

@vf 0
F #50; on zo50, ~67!

ẑo•va0
F 50 on zo50, ~68!

ẑo•@tf 0
F #•~ x̂o and ŷo!50 on zo50. ~69!

The unique solution forvf 0
F can be expressed as

vf 0
F ~r ,t !5 (

f 85a

b

Nf f 8~r ;Pc!•Ff 8~ t !, ~70!

where the four response tensorsNf f 8(r ;Pc) are all highly
nonlinear functions ofPc . Upon averaging this flow over th
domain ofV f o , we obtain the macroscopic laws

^vf 0
F &5 (

f 85a

b

L f f 8•Ff 8 , ~71!

where the transport tensors are defined as

L f f 85
1

VEV f o

d3rN f f 8~r ;Pc!. ~72!

The symmetry properties of these transport tensors will
addressed in a later section.

The normal-stress boundary condition involving thee0

fields is

“

2z11j2z152 ẑo•@tf 0#• ẑo1~Fa2Fb!•r , ~73!
e

in

e

e

where the source termẑo•@tf 0#• ẑo has contributions from
both the capillary-pressure flowvf 0

P and the Stokes flowvf 0
F .

Along with the no-slip condition at the contact lines, th
linear differential equation allows the first correction of th
interface displacement due to viscous flow to be expresse
the separated formz15z1

F1z1
P , where

ẑoz1
F~xo ,yo ,t !5(

f 5a

b

Z f~xo ,yo ;Pc!•Ff , ~74!

z1
P~xo ,yo ,t !5xZ~xo ,yo ;Pc!]Pc /]t, ~75!

and where the response tensorZ f(xo ,yo ;Pc) and scalar
Z(xo ,yo ;Pc) are, as well, nonlinear functions ofPc .

The e1 problem is now stated~and after this we stop!

“•tf 150 in V f o , ~76!

@vf 1#52z1F]vf 0

]zo
G on zo50, ~77!

ẑo•va15“z1•va02z1ẑo•
]va0

]zo

1xS ]z1

]t
2 ẑo•“z1

]zo

]t D on zo50, ~78!

ẑo•@tf 1#• x̂o5“z1•@tf 0#• x̂o2hxo

]z1

]xo
ẑo•@tf 0#• ẑo

2z1ẑo•F]tf 0

]zo
G• x̂o on zo50, ~79!

where only thexo component of the shear traction bounda
condition has been given but there is an analogousyo com-
ponent as well.

This problem is completely linear in the first-order field
All terms on the right-hand side of the boundary conditio
are known and act as flow-inducing forces. Due to the l
earity, the response from each such inhomogeneous bo
ary term can be determined independently~i.e., with the
other inhomogeneous terms set to zero! and the results
summed to give the total response. Due to the separat
z15z1

P1z1
F andv05v0

P1v0
F already treated, each term in th

boundary conditions is seen to be proportional to one of
five following macroscopic-forcing forms:~a! FfFf 8 , ~b!
x]Ff /]t, ~c! xFf]Pc /]t, ~d! x2]Pc /]t, and ~e!
x2(]Pc /]t)2. For example, the boundary termx]z1

P/]t in
Eq. ~78! gives rise to both forms~d! and~e!. Thus, the mac-
roscopic transport associated with thee1 problem can be
expressed as
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^vf 1&5 (
f 85a

b

(
f 95a

b

3A f f 8 f 9~Pc!:Ff 8Ff 9

1x (
f 85a

b

Bf f 8~Pc!•]Ff 8 /]t

1x (
f 85a

b

Cf f 8~Pc!•Ff 8]Pc /]t1x2@df~Pc!

1ef~Pc!]Pc /]t#]Pc /]t, ~80!

where the eight transport triads~third-order tensors! 3A f f 8 f 9 ,
the eight transport dyadsBf f 8 andCf f 8 , and the four trans-
port vectorsdf andef are all nonlinear functions ofPc . An
enormous number of transport coefficients have entered
e1 contribution and the situation becomes exponentia
worse as higher-order contributions are considered.

Before we treat the symmetry properties of these laws
summarize them, we first establish the macroscopic flu
conservation laws and consider the connection between^vf&
and what is actually measured during flow experiments.

V. FLUID CONSERVATION

Both Whitaker @8# and Auriault @9# have addressed th
fluid-conservation laws using volume-averaging argume
so just a brief outline is given here.

The definition of the derivative of a volume-averag
quantity is again used to write

“•^vf&5
1

VE]Ef

n•vfdS. ~81!

The incompressibility condition“•vf50 is then averaged
and the divergence theorem applied to obtain

05
1

VE]Ef

n•vfdS1
1

VE]F
nf•vadS, ~82!

where on]F we havena51n while nb52n. The integral
over ]F can be identified as the time rate of change of
fluid-a volume fraction,

]wa

]t
[

1

VE]F
n•vadS, ~83!

so that the fluid-conservation laws take the form

“•^va&52
]wa

]t
, ~84!

“•^vb&51
]wa

]t
. ~85!

For incompressible two-phase flow, the total fluid flux
conserved“•@^va&1^vb&#50.

We can use the boundary condition~52! in the above
definition of ]wa /]t to establish throughO(e)
is
y

d
-

s,

e

]wa

]t
5

x

VE dxodyo

hxohyo
H ẑo• ẑ

]zo

]t
1eF]z1

]t
2“z1• ẑ

]zo

]t G J .

~86!

Due to the known force dependences ofzo and z1, we can
immediately write the forms

]wa

]t
5xS0~Pc!

]Pc

]t
1ex2S1~Pc!S ]Pc

]t D 2

1ex(
f 5a

b Fsf~Pc!•
]Ff

]t
1t f~Pc!•Ff

]Pc

]t G . ~87!

The various coefficientsS0 , S1 , sf , and t f are nonlinear
functions ofPc . Both S0 andsf can be readily measured i
a laboratory; however, the measurement oft f andS1 is likely
to be much more subtle. We underline that any such m
surements must be performed on samples containing pe
lating fluids when bothPc50 andFf50. This expression for
]wa /]t is what closes the system of macroscopic equatio

VI. FLUID FLUX

The issue addressed here is the connection between
volume-averaged floŵvf& and the fluxJf that is actually
measured during experiments. Auriault@9# considered this
connection only for steady-state situations in which the
terface is not moving. We discuss here the more gen
situation in which saturation levels are changing in a sam

The relation between a volume average and a flux is
tained by volume integrating the identity“•(vfr )
5r (“•vf)1vf•“r5vf to give @13#

^vf&5
1

VE]Ef

n•vfrdS1
1

VE]F
nf•vardS. ~88!

Note that from Eq.~82!, this definition of̂ vf& is independent
of the origin ofr . However, the physical interpretation of th
two surface integrals is affected by the choice of origin.
what follows, we assumer has its origin at the center of th
averaging volume.

Appealing to any specific averaging volume~such as the
disk considered earlier! demonstrates that

Jf[
1

VE]Ef

n•vfrdS ~89!

is the average rate at which fluidf is fluxing across all exte-
rior surfaces]E of a sample. The fluxJf , as defined by Eq.
~89!, is something that can be experimentally observed
measured in the laboratory. The other contribution to^vf&
has an interpretation analogous to Eq.~83!,

]ra

]t
[

1

VE]F
n•vardS, ~90!

where the pointra is a measure of the center of the fluid-a
distribution in an averaging volume and is defined as

ra[
1

VEVa

rdV. ~91!
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We will consider how]ra /]t can be experimentally mea
sured momentarily.

The relations we seek are thus of the form

^va&5Ja1
]ra

]t
, ~92!

^vb&5Jb2
]ra

]t
. ~93!

Since ]ra /]t represents the moment of the saturati
changes across a sample, the volume-averaged flow ca
taken as the measured flux only if the local saturation
changing rather uniformly across a sample or if the interf
is in a steady state. We underline that the average flow^vf&
cannot be directly measured in the laboratory. What is n
mally measured is the flux across entrance and exit surf
of a sample, which is equivalent to measuringJf ~the average
flux over both the entrance and the exit surfaces! and]wa /]t
~the difference between the entrance and exit fluxes!.

Because of the form of the conservation laws~84! and
~85!, we want to express the transport laws of the theory
terms of ^vf&. However, for all of the coefficients in suc
transport laws to be measurable in the laboratory, Eqs.~92!
and ~93! show that we must have a way to measure]ra /]t.
If the fluid densities are different (raÞrb), the following is
one such measurement procedure.

The center of massr cm of the fluid-filled pore space is
defined as

r cm5

E
Va

rardV1E
Vb

rbrdV

Vwara1Vwbrb
~94!

5
rara1rbrb

wara1wbrb
. ~95!

We writewb(t)5f2wa(t), wheref is the constant porosity
in a sample, multiply both sides of Eq.~95! by wara
1wbrb , and then take the time derivative to obtain

]ra

]t
5r cm

]wa

]t
1S frb

ra2rb
1waD ]r cm

]t
. ~96!

We have used the fact that]rb /]t52]ra /]t. Thus, the
measurement of]ra /]t has been reduced to measuring t
changes in the center of mass of the pore space. Since
grains do not redistribute, this can be performed by placin
horizontal sample on a support that is sensitive to the s
ple’s weight at various points along its length.

VII. SYMMETRY OF THE TRANSPORT LAWS

We now write out the transport laws obtained earlier,
be
s
e

r-
es

n

the
a
-

^va&5Laa•Fa1Lab•Fb1xma

]Pc

]t

1e(
f 5a

b

(
f 85a

b

3Aa f f8 :Ff 8Ff1ex(
f 5a

b FBa f•
]Ff

]t

1Ca f•Ff

]Pc

]t G1ex2Fda

]Pc

]t
1eaS ]Pc

]t D 2G , ~97!

^vb&5Lba•Fa1Lbb•Fb1xmb

]Pc

]t

1e(
f 5a

b

(
f 85a

b

3Ab f f8 :Ff 8Ff1ex(
f 5a

b FBb f•
]Ff

]t

1Cb f•Ff

]Pc

]t G1ex2Fdb

]Pc

]t
1ebS ]Pc

]t D 2G . ~98!

One may note that it is only the coefficients involving th
time rate of change of the forces~the coefficients multiplied
by x) that require an independent measurement of the s
ration moment]ra /]t in order to be experimentally deter
mined.

These are complicated unwieldy laws. Since for practi
earth problems the ordere contributions will commonly be
neglected, we elect to address here only the symmetry p
erties of thee0 contributions. It will be demonstrated tha
Lab5Lba

T , Laa5Laa
T , andLbb5Lbb

T . Although thee1 sym-
metry properties are not considered, it will be demonstra
that the flux that is quadratic in the pressure gradients v
lates reciprocity.

Before addressing the tensorial symmetries, we begin
noting thatmb52ma . We have stated earlier that themf
vanish in the absence of saturation gradients. These co
cients control the flows excited by a uniform change in t
capillary pressure throughout a sample. In the presence
saturation gradient, there will always be more meniscii
one side of a sample~say the low-saturation side! than on the
other. So ifPc increases uniformly, there tends to be mo
influx of the nonwetting fluida on the low-saturation side
than on the high-saturation side resulting in a net aver
flow ^va& throughout the sample given byma]Pc /]t. At the
same time there will also be an oppositely directed flow^vb&,
and because there are no macroscopic-pressure grad
driving such incompressible flow, fluid conservation requir
that ^vb&52^va& or, equivalently,mb52ma .

A. Reciprocity of the linear laws

In a companion paper@6#, we show how Onsager theor
may be used to address the reciprocity question for this
other two-phase flow problems. Here, we use a classica
gument that exploits nothing but the self-adjoint nature of
e0 Stokes equations and that is nearly identical to the fam
iar wave-field reciprocity arguments used in electromagn
@14# and elastodynamic@15# theory. Using similar argu-
ments, Pride@16# has treated the reciprocity of the electrok
netic transport equations while Flekko”y @17# has treated cer-
tain problems in hydrodynamic dispersion. Auriault@9# has
addressed the symmetries using a variational form of
argument.
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We begin with the relation between the ‘‘cross’’ coef
cientsLab andLba . Let us definea flow fields to be those
created whenFaÞ0 andFb50 andb fields to be those when
FbÞ0 and Fa50. Throughout what follows, we keepPc
5const. Consider the following scalar products involvi
sucha andb fields:

va
b
•@“•ta

a1Fa50# in Vao ,
~99!

va
a
•@“•ta

b50# in Vao ,

vb
a
•@“•tb

b1Fb50# in Vbo ,
~100!

vb
b
•@“•tb

a50# in Vbo .

Upon using the identityv•(“•t)5“•(t•v)2“v:tT, noting
that t5tT, and adding, we obtain

Fa•va
b5“•@ta

b
•va

a2ta
a
•va

b#1“va
b :ta

a

2“va
a :ta

b in Vao ,
~101!

Fb•vb
a5“•@tb

a
•vb

b2tb
b
•vb

a#1“vb
a :tb

b

2“vb
b :tb

a in Vbo .

Now “va
b :ta

a5“va
a :ta

b as can be verified using the explic
form t52pI1h@“v1(“v)T# along with“•v50 and the
fact that only the symmetric part of“v contributes to the
double-dot products.

Thus, upon integrating Eqs.~101! over their respective
domains, using the divergence theorem, introducing ma
scopic flow definitions such aŝva

b&5V21*Vao
va

bdV, and

noting that thee0 contributions of the transport laws~97! and
~98! with Pc5const give

Fa•^va
b&5Fa•Lab•Fb , ~102!

Fb•^vb
a&5Fb•Lba•Fa , ~103!

we then obtain by subtraction

Fa•Lab•Fb2Fb•Lba•Fa

5Ea2Eb1
1

VE dxodyo

hxohyo

3 ẑo•@ta
b
•va

a2ta
a
•va

b1tb
a
•vb

b2tb
b
•vb

a#. ~104!

The surface integrals over the rigid grain surfaces~that arise
from the divergence theorem and are not shown! vanish be-
cause of the no-slip condition. The contributionsEa andEb
are the integrals over the external surface given by

Ea5
1

VE]Ea

n•@ta
b
•va

a2ta
a
•va

b#dS, ~105!

Eb5
1

VE]Eb

n•@tb
a
•vb

b2tb
b
•vb

a#dS. ~106!

We would like to argue that these external surface integ
are always zero. If the sample is required to have perio
boundary conditions, then these integrals vanish exac
o-

ls
ic
y.

However, periodic boundary conditions are inconsistent w
the presence of saturation gradients. The boundary contr
tions Ea andEb will also vanish if we imagine that each o
the pores lying on the entrance and exit faces are defor
so that they are each locally straight conduits. If we do this
such a manner that leaves both the total pore area on
faces and the total flux rates across the faces invariant~this is
always possible!, then the nature of the flow throughout th
majority of the sample will not be affected if the sample
sufficiently large~as can be justified using Green’s tensor!.
In each of the small straight entrance conduits, however,
integrands of bothEa and Eb vanish. Such an argument i
similar to Saint Venant’s principle in elasticity theory an
only requires that the local pore reconstructions on]E are
over length scales much smaller than the size of the sam
being considered.

Having ignored bothEa and Eb , we next introduce the
boundary conditions~68! and ~69! of the a andb problems
into the remaining integrand overzo50. It is seen that the
integrand vanishes exactly so that

Fa•Lab•Fb2Fb•Lba•Fa50. ~107!

By systematically varyingFa andFb to align with the prin-
cipal directions of whatever coordinate system we are wo
ing in, we can finally conclude thatLab5Lba

T as desired.
Similar arguments establish the symmetry of the tens

Laa andLbb . We only sketch the argument forLaa because
the argument and conclusions forLbb are identical. For thea
problem, instead of considering the fields generated byFa
alone, we now consider the fields generated by two unifo
force densitiesFa1 and Fa2 that have arbitrary orientation
and magnitude but that are both confined to the regionVao .
Defining a1 and a2 fields as those generated fromFa1 and
Fa2, respectively, we form the following products:

va
a2
•@“•ta

a11Fa150# in Vao ,

va
a1
•@“•ta

a21Fa250# in Vao ,

vb
a2
•@“•tb

a150# in Vbo ,

vb
a1
•@“•tb

a250# in Vbo .

If we add and use the identities established above, then

va
a2
•Fa12va

a1
•Fa25“•@ta

a2
•va

a12ta
a1
•va

a2# in Vao ,

05“•@tb
a1
•vb

a22tb
a2
•vb

a1# in Vbo .

Each of these is then integrated over its respective dom
the divergence theorem applied, and the results added.
surface integrals over the grain surfaces again vanish, a
the integrals over the external surfaces. If the definit
^va

a i&5Laa•Fai is introduced, wherei 51,2, we then arrive at

Fa2•Laa•Fa12Fa1•Laa•Fa2

5
1

VE dxodyo

hxohyo
ẑo•@ta

a2
•va

a12ta
a1
•va

a2

1tb
a1
•vb

a22tb
a2
•vb

a1#.
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Upon appealing to the boundary conditions of thea problem
and using the fact thatFa1 and Fa2 are arbitrarily directed,
we obtain the symmetryLaa5Laa

T . An identical argument
and result holds forLbb .

Thus, the steady-state (Pc5const) linear laws controlling
macroscopic flux of fluidsa andb follow ‘‘two-phase Darcy
laws’’ of the form

S ^va&

^vb&
D 5S Laa Lab

Lab
T Lbb

D •S Fa

Fb
D . ~108!

It is important to remember that the reciprocity holds only
Lab is measured at the samePc value asLba .

B. Breaking of reciprocity by the nonlinear laws

We now consider thee1 transport laws whenPc5const,
which can be written

^vf 1&5~3L f aa•Fa1,3L f ab•Fb!•Fa

1~3L f ba•Fa13L f bb•Fb!•Fb . ~109!

If we write ^vf 1&5^vf 1&(Fa ,Fb), then cross-coupling reci
procity can again be defined by considering whet
Fa•^va1&(0,Fb)5Fb•^vb1&(Fa ,0). Using the quadratic ex
pressions~109!, the cross-coupling reciprocity is thus d
fined by whether

Fa•3Labb :FbFb5Fb•3Lbaa :FaFa . ~110!

Since the coefficients 3L f f 8 f 9 are pressure-gradien
independent material properties, it is immediately seen
for arbitrary values of the amplitudesuFau and uFbu, such
reciprocity cannot be satisfied. In the presence of nonline
ity, such cross-coupling reciprocity is violated.

VIII. PRACTICAL SUMMARY AND DISCUSSION

We now summarize the laws in the form that they w
most commonly be used in practical earth problems. T
goal is to make as clear a comparison as possible betw
what we have learned here and the standard formulatio
outlined in the Introduction. The two cases in which eith
x5O(1) or x5O(e) will be presented.

A. The x5O„1… and e50 laws

As stated previously, the conditionx5O(1) is typical of
laboratory situations in which a highly permeable mate
experiences diffusion over small length scales. In this ca
the macroscopic laws take the form

“•^va&52xS0

]~ p̄a2 p̄b!

]t
, ~111!

“•^vb&5xS0

]~ p̄a2 p̄b!

]t
, ~112!

^va&52Laa•“ p̄a2Lab•“ p̄b1xma

]~ p̄a2 p̄b!

]t
,

~113!
r

at

r-

e
en
as
r

l
e,

^vb&52Lab
T
•“ p̄a2Lbb•“ p̄b2xma

]~ p̄a2 p̄b!

]t
.

~114!

This represents a complete set of equations for the two
knowns p̄a and p̄b . All the coefficients (S0 , mf , L f f 8) are
nonlinear functions ofPc5 p̄a2 p̄b and all can be measure
in a laboratory.

The nonstandard coefficient isma , which, as discussed
earlier, owes its existence to the presence of a satura
gradient. To estimate the importance ofma relative to the
standard Darcy-permeability terms requires, among ot
things, an estimate of how many meniscii are present per
volume of material and this depends sensitively on the s
ration history as well as the material type. We will not ma
such an estimate here. Of interest would be direct experim
tal measurements ofma . Although possible to perform, we
are unaware of any such existing measurements.

A capillary-pressure lawPc(wa) does not directly presen
itself in the development. Only the time derivative of th
inverse of such a law has arrived,

]wa

]t
5xS0~ p̄a2 p̄b!

]~ p̄a2 p̄b!

]t
. ~115!

If this expression is integrated in order to obtain a capilla
pressure law, an integration constant arrives that correspo
to the initial-state saturation of a given sample. Thus, th
are always two distinct saturations that must be presen
any proposed capillary-pressure law:~i! the initial-state satu-
ration and ~ii ! the saturation changes induced by appli
forces. These two contributions will have distinctly differe
gradients and so the common practice of replacing one of
two pressure gradients by“wa becomes a dangerous exce
cise. It is our preference that such substitutions be avoi
and that the law of changes@Eq. ~115!# be directly employed.
We reemphasize that any laboratory measurements oS0
must be performed on samples with percolating fluids a
over Pc ranges that do not migrate the contact lines.

We will not attempt to quantify the possible function
dependence ofS05S0(Pc). However, de Gennes@3# has
suggested that percolation theory might provide a unive
scaling law of the form

S05a~Pc2Pc* !d, ~116!

where the constanta and the percolation thresholdPc* vary
from one sample to the next whiled'20.6 ~in three dimen-
sions! is a universal constant. Our theory requires the con
lines to remain fixed asPc changes so that saturatio
changes can only be due to stretching of the meniscii. No
theless, the grain surfaces in rocks are fractals@18# possess-
ing a continuous spectrum of different-sized nooks and cr
nies into which, say, an oil meniscus could be pressed. T
fractal grain surfaces might be able to produce a satura
scaling law without significant migration of the initial con
tact lines. However, new contact lines would necessarily
created in such a process with accompanying hystere
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Such behavior is not allowed for in the simple scaling law
Eq. ~116! nor in our theory. We thus leave such speculat
to future work.

B. The x5O„e… laws

The conditionx5xoe, wherexo is O(1), is nowconsid-
ered. Note that from the estimates of Eq.~41! we can define
xo as

xo5
k

sbal c
. ~117!

In order to estimate the magnitude of this dimensionl
number, we need to know how the permeabilityk is related
to the pore lengthl c . Thompson@18# has used percolation
theory to obtain the following estimate:

k5
l c

2

226F
, ~118!

in which l c is precisely the breakthrough radius in
mercury-invasion experiment whileF is the electrical forma-
tion factor. The dimensionless product 226F is on the order
of 104 in sandstones and, as such, should not be negle
even in order-of-magnitude estimates. Thompson pres
data from 50 sedimentary rocks having permeabilities t
span some six orders of magnitude to demonstrate the
traordinary validity of this relation. Assuming as earlier th
sba;1028 m, we use Thompson’s measurements ofl c and
F to obtain xo&1 for all 50 of Thompson’s sandstone
Thus, the regimex5O(e) is more than just an academ
exercise. Indeed, it represents the more typical regime
countered in the earth.

The two-phase flow laws in this slow-diffusion regime a
interesting because in order to model the saturation chan
terms throughO(e) must now be included,

“•^va&52xoeS0

]~ p̄a2 p̄b!

]t
, ~119!

“•^vb&5xoeS0

]~ p̄a2 p̄b!

]t
, ~120!

^va&52Laa•“ p̄a2Lab•“ p̄b1xoema

]~ p̄a2 p̄b!

]t

2e(
f 5a

b

(
f 85a

b

3Aa f f8 :“ p̄f 8“ p̄f , ~121!

^vb&52Lab
T
•“ p̄a2Lbb•“ p̄b2xoema

]~ p̄a2 p̄b!

]t

2e(
f 5a

b

(
f 85a

b

3Ab f f8 :“ p̄f 8“ p̄f . ~122!

The difference between these equations and the standard
mulation is now extreme. Whenx5O(e), any estimates of
how the saturation levels are changing that do not include
quadratic-force terms could easily be in error by an orde
f
n

s

ed
ts
t
x-

t

n-

es,

or-

e
f

magnitude or more. Since the regimex5O(e) seems to be
the rule rather than the exception in the earth, we arrive
the unavoidable conclusion that to model saturation va
tions at points behind the macroscopic invasion fro
quadratic-force Darcy laws must be used.
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APPENDIX: PROPERTIES OF THE FLUID INTERFACE
USING NORMAL COORDINATES

Before external forces are applied to the porous syst
the fluid interface occupies a stable position and has cu
linear coordinates (x,y,z) attached to it wherez defines the
linear distance normal from the interface andx, y are or-
thogonal coordinates tangent to the surface. The lengthds of
an infinitesimal line element is given as

ds25S dx

hx
D 2

1S dy

hy
D 2

1dz2, ~A1!

wherehx5hx(x,y,z), hy5hy(x,y,z), andhz51 are the met-
rical coefficients of the coordinates. In this appendix, we
interested in characterizing the properties of the displa
surface

z5z~x,y! ~A2!

using such ‘‘normal coordinates.’’ The goal is to define t
mean curvatureH, the normal vectorn, and the tangent vec
tors t in terms of the functionz and the metrical coefficients
hx andhy . Normal coordinates are meaningful~useful! only
when the interface displacementz is much smaller than the
initial radius of curvature ofz50; i.e., uzu!u2/Hou. If this
condition is not met, then the coordinates can become m
tivalued and generally ill defined in the range of intere
0,uzu,uzu.

Let r z denote the distance vector to points lying on t
surfacez5z. We haver z5(x,y,z) so that

dr z5
]r z

]x
dx1

]r z

]y
dy. ~A3!

From Fig. 5 it is clear that by considering two neighborin
points on z50 at x and x1dx separated by the distanc
dr05 x̂dx/hx , then

z~x,y!ẑ1dr z5dr01z~x1dx,y!ẑ~x1dx,y! ~A4!

FIG. 5. Two neighboring pointsx and x1dx on the initial in-
terfacez50 and definition of the corresponding distance vector
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5
dx

hx
x̂1S z1

]z

]x
dxD S ẑ1

] ẑ

]x
dxD , ~A5!

where terms ofO(dx2) have been neglected becausedx is
an infinitesimal. For curvilinear coordinates we have

] ẑ

]x
52

1

hx
2

]hx

]z
x̂ ~A6!

so that

]r z

]x
5

1

hx
S 12

z

hx

]hx

]z D x̂1
]z

]x
ẑ, ~A7!

]r z

]y
5

1

hy
S 12

z

hy

]hy

]z D ŷ1
]z

]y
ẑ, ~A8!

which are the two key vectors that will be needed in wh
follows. Note that the metrical coefficients and the deriv
tives with respect toz are all evaluated on the initial plan
z50 both here and throughout.

In differential geometry@19#, the surface properties ca
be defined in terms of the coefficients of the two ‘‘fund
mental forms.’’ The first fundamental form defines the infin
tesimal distance along the surface and is thus written

dr z•dr z5Edx212Fdx dy1Gdy2, ~A9!

where the coefficients are defined as

E5
]r z

]x
•

]r z

]x
5

1

hx
2 S 12

z

hx

]hx

]z D 2

1S ]z

]xD 2

, ~A10!

F5
]r z

]x
•

]r z

]y
5

]z

]x

]z

]y
, ~A11!

G5
]r z

]y
•

]r z

]y
5

1

hy
2 S 12

z

hy

]hy

]z D 2

1S ]z

]yD 2

. ~A12!

The second fundamental form of the surfacez5z is defined
2dr z•dn, wheren is the unit normal defined as

n5
]r z /]x3]r z /]y

u]r z /]x3]r z /]yu
. ~A13!

Upon carrying out the cross products, we obtain

hxhyDn5S 12
z

hx

]hx

]z D S 12
z

hy

]hy

]z D ẑ

2S 12
z

hy

]hy

]z Dhx

]z

]x
x̂2S 12

z

hx

]hx

]z Dhy

]z

]y
ŷ,

~A14!

where the coefficientD is defined as

D2[EG2F2. ~A15!

Thus,n has been defined solely in terms ofhx , hy , andz. A
change inn alongz5z(x,y) is given by
t
-

dn5
]n

]x
dx1

]n

]y
dy. ~A16!

Thus, with the second fundamental form written as

2dr z•dn5edx212 f dx dy1gdy2, ~A17!

the coefficientse, f, andg are defined as

e52
]r z

]x
•

]n

]x
5

]2r z

]x2
•n, ~A18!

f 52
]r z

]x
•

]n

]y
5

]2r z

]x]y
•n, ~A19!

g52
]r z

]y
•

]n

]y
5

]2r z

]y2
•n. ~A20!

We have used that2dr z•dn5n•d2r z becausen•dr z50. It
is easier to take a second derivative onr z than to differenti-
aten. Thus, upon taking the second derivative we obtain
rather complicated expressions fore, f, andg,

De5S 1

hy
2

z

hy
2

]hy

]z D ]z

]x F 1

hx
2

]hx

]x
1

]

]x S z

hx
2

]hx

]z D
1

1

hx
2

]hx

]z

]z

]xG2S 1

hx
2

z

hx
2

]hx

]z D 2
]z

]y

hy

hx
2

]hx

]y

1S 1

hx
2

z

hx
2

]hx

]z D S 1

hy
2

z

hy
2

]hy

]z D
3F ]2z

]x2
1

1

hx
2 S 1

hx
2

z

hx
2

]hx

]z D ]hx

]z G , ~A21!

D f 5S 1

hy
2

z

hy
2

]hy

]z D ]z

]x F 1

hx
2

]hx

]y
1

]

]y S z

hx
2

]hx

]z D G
1S 1

hx
2

z

hx
2

]hx

]z D ]z

]y F hx

hy
2 S 12

z

hx

]hx

]z D ]hy

]x

1
1

hy
2

]z

]x

]hy

]z G1S 1

hx
2

z

hx
2

]hx

]z D S 1

hy
2

z

hy
2

]hy

]z D ]2z

]x]y
,

~A22!

Dg5S 1

hx
2

z

hx
2

]hx

]z D ]z

]y F 1

hy
2

]hy

]y
1

]

]y S z

hy
2

]hy

]z D
1

1

hy
2

]hy

]z

]z

]yG2S 1

hy
2

z

hy
2

]hy

]z D 2
]z

]x

hx

hy
2

]hy

]x

1S 1

hy
2

z

hy
2

]hy

]z D S 1

hx
2

z

hx
2

]hx

]z D
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3F ]2z

]y2
1

1

hy
2 S 1

hy
2

z

hy
2

]hy

]z D ]hy

]z G . ~A23!

The above results are exact to this point.
The mean curvature H(z) is defined at each point of th

surfacez5z(x,y) as H(z)[Rx
211Ry

21 , whereRx and Ry

are the radius of curvatures in thex and y directions. It is
expressible in terms of the coefficientsD, E, F, G, e, f, g of
the two fundamental forms as@19#

H~z!52
~Eg22F f 1Ge!

D2
. ~A24!

This expression is too complicated to write out explicitly
terms ofhx , hy , andz.

However, in this paper, we only need the properties of
surfacesz50 andz5ez, wheree is taken as a very sma
parameter. Whenz50 ~i.e., z50), the above expression
give the normal and tangential vectors as

n~0!5 ẑ, tx~0!5 x̂, ty~0!5 ŷ, ~A25!

and the mean curvature as

H~0![Ho52
1

hx

]hx

]z
2

1

hy

]hy

]z
. ~A26!
.

u

e

Whenz5ez and when terms only to first order ine are kept,
the normal and tangential vectors become

n~ez!5 ẑ2e“z, where “z5 x̂hx

]z

]x
1 ŷhy

]z

]y
,

tx~ez!5 x̂1ehx

]z

]x
ẑ, ty~ez!5 ŷ1ehy

]z

]y
ẑ, ~A27!

while the mean curvature becomes~after some algebra!

H~ez!5Ho2e~“2z1j2z!. ~A28!

In the normal coordinates, the Laplacian is defined

“

2z5hxhyF ]

]x S hx

hy

]z

]xD1
]

]y S hy

hx

]z

]yD G ~A29!

while the coefficientj is defined

j2[S 1

hx

]hx

]z D 2

1S 1

hy

]hy

]z D 2

. ~A30!

These are theO(e) results required in this paper. By settin
hx5hy51 throughout the above, we obtain the results
displacement from an initially flat interface.
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