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Two-phase flow through porous media in the fixed-contact-line regime
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The complete set of equations controlling immiscible two-phase flow through porous media are derived from
first principles under the sole restriction that contact lines between the two fluids and the grain surfaces are not
allowed to migrate irreversibly. Because rough grain surfaces have the ability to trap contact lines over
significant ranges of capillary-pressure variation, such laws are of practical interest. As distinct from previous
coarse-graining work, we explicitly allow for the stretching of the fluid interface, which results in considerable
nonlinearity at the macroscopic scale. The laws are obtained through an asymptotic analysis and have several
new features compared to the standard laws conventionally used in two-phase flow modeling. These include
the need to(i) distinguish between measurable fluxes and the volume-averaged (flovajlow for flow
induced by the time rate of change of the capillary pressure;(#@ndnclude quadratic-force terms in the
generalized Darcy laws when macroscopic-pressure diffusion is (@swlefined herejn
[S1063-651%99)01510-X

PACS numbgs): 81.05.Rm, 47.55.Kf, 47.55.Mh, 47.10g

[. INTRODUCTION with the proper continuum boundary conditions near moving
contact lines(see[5] for a review. Starting from the pore
Despite their economic importance, the macroscopic lawscale, we underline that, to our knowledge, no work has ever
controlling immiscible two-phase flow through porous mate-attempted to obtain the macroscopic flow laws when contact
rials such as sedimentary rock remain poorly understoodines are free to redistribute.
The reason for this is that the fluid distributions in a sample The standard formulatiofil] has three partgi) the con-
change whenever the forces driving the flow change. Sinceervation of mass of both fluid$ii) a Darcy law for each
the fluid distributions define the resistance experienced bfluid; and (iii) an assumed macroscopic capillary-pressure
each fluid, the transport laws controlling the macroscopidaw P.(¢). When there is a large viscosity contrast between
(volume-averaged flux are, in general, nonlinear and the two fluids such as for air and water, it is common to
history-dependent functions of the applied force. make the additional assumptions that the two Darcy laws are
Furthermore, when the saturation levels are changing, it islecoupled and that the air does not move at the macroscale
conventional to complete the macroscopic-flow descriptionwhich leads to the so-called Richard’s equatidduch for-
with a relation between the average capillary presfyan mulations give a closed set of equations that, along with
each sample and the saturatip1—3]. The P.(¢) relation  stated boundary conditions, are used to make predictions of
is often taken from static fluid-invasion experiments inhow fluid saturation and pressure evolve through time in the
which neither fluid forms a connected path across thesarth. However, the formulation has never been justified
sample. It is then applied to flow situations where both fluidsthrough coarse-graining of the pore-scale physics. Inconsis-
percolate. Such inconsistent useRf(¢) is common prac- tencies in the scheme have been voi¢&d and a central
tice even to this day. purpose of this paper is to put the formulation through a
In the present work, we wish to establish a consistentareful examination.
macroscopic two-phase flow description that connects to the In the present work, saturation variations are allowed for
pore-scale physics in a well-defined way. To do so, analysiby allowing the fluid interface to stretch. The important role
is limited to the flow regime where history dependence is noplayed by saturation gradients is emphasized. The analysis
important. Such a regime has two requiremefijsboth flu-  shows how the usual linear transport laws yield to nonlinear
ids percolate in the absence of flow, afij contact lines forcing at finite capillary numbee. The linear Darcy laws
between the fluid interface and grain surfaces remain fixeemerge as—0. At this order it is shown that the cross-
once forces are applied and flow begins. The hysteresis afoupling terms satisfy Onsager reciprocity—a result which is
contact-line movemenit4] is behind the need for both of obtained in the context of statistical mechanics in a compan-
these requirements. As will be shown, grains with rough surion paper{6].
faces have the ability to pin contact lines over nontrivial EXxisting coarse-graining work for this problem includes
ranges of applied force. that of Whitaker{8] and Auriault[9,10]. These authors also
We view our contribution as a practical first step toward arestrict analysis to the case of fixed contact lines. However,
more general model in which larger applied-force variationmeither treat the important role played by the fluid-interface
are allowed for so that contact lines may irreversibly migratedeformation as a function of applied-force levels. Thus, nei-
Unfortunately, there remains much uncertainty associatether work resolves any of the questions surrounding the use
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0762 L 0+6a On a flat wall the equilibrium value of the interface cur-
T vature is 1R=2 cos®/h, whereh is the channel width. This
. ' B yields the well-known value for the pressure drop
R R,
20
A C Pe=,c0s0, (6A)

FIG. 1. A fluid channel with small asperities characterized by an

angle, and negligible height. whereo is the surface tension. At the asperities, the wall is
tilted by an angled, as shown in the figure so that the wall

of P.(¢) nor considers the nature of any nonlinearity in theorientation of the meniscii is tilted by the same angle relative

flow description. From a technical viewpoint, our work is to the meniscii on the flat wall. This means that the equilib-

able to go beyond this existing work because we explicitlyrium curvature on the left-facing side of an asperity is

treat the interface displacement. 1/R_=2 cos@—6,)/h while that on the right-facing side is
1/R, =2 cosP+6,)/h. Hence, for meniscii on the edgeB,
can be in the range

Il. ASSUMPTIONS
Before stating the specific pore-scale boundary value 20 cogO+ 0a)<P _|20cod0—0,)/h if ©>6,
problem that will be used to obtain the macroscopic laws, we h T 20/h if O<6,.
wish to discuss some of the assumptions that go into the 2)

model. At the scale of the porous continuum, the only exact

statement that can be made is the conservation of mass of tfi¢ie reason for the two possible upper limits is thaif

two fluids. The remaining laws require approximations and< g,, then once we arrive a.=2c/h, the curvature is at
assumptions that at the very least should be clearly stateigs smallest possible valuR_~h/2 so that any further in-
and internally consistent and would preferably be associatedrease in the capillary pressure would cause the meniscus to
with some kind of validity condition. break off from the wall.

The menisciB andC in Fig. 1 correspond to the high and
low values of the rang€). For a trapped meniscus to move
to the right, the external pressure drop must be lower than

We begin with a simple qualitative justification for the the lowestP, value, while for a meniscus to move to the left,
principal approximation of thisiand the other existing the external pressure must be higher than the high value of
coarse-graining work; namely, that contact lines between the> . The fact that these pressures are different is an important
two fluids and the grains can remain fixed as applied forcegsource of hysteresis.
vary. Is such a flow regime even possible? So a meniscus that entered a channel of widtat a

Roughness of the solid walls is known to provide onecapillary pressure close to the equilibrium value of En.
mechanism for contact-line hystereplg. This mechanismis  will remain trapped on an asperity within the channel until

illustrated in Fig. 1, which shows a pore channel with a fewthe order-of-magnitude deviatiodsP, of the capillary pres-
asperities representing the surface roughness. In a channglre exceed the range

with flat walls, the contact angl® determines the equilib-

rium curvature of a meniscug@uch as meniscué in the —olh<AP.<+alh. 3)
figure) and thus the local capillary pressuke. If the capil-

lary pressure were to deviate a small amount from this valuqhis range is nontrivial especially in tight materials like
due to externally applied pressures, a meniscus would spofock. For an oil/water meniscus-&5x 10”2 Pa m) trapped
taneously migrate to the riglifor a decrease if;) or to the  in a 5-micron channel(a sandstone the condition is

left (for an increaseuntil an asperity was encountered. Upon —10* pa<AP.< +10* Pa. Note that 1DPa is the pressure
encountering an asperity, the contact lines of a Ieft'W‘OVin%roduced by a one-meter stand of water or a standard house-
meniscus will spontaneously rise up the asperity face, reacRgld vacuum cleaner.

the peak, and just as they start to descend they will find the Of course, there is a wide distribution of pore widthi
equilibrium contact angle and stop. On the pore .scale, theaal rocks. For an externally fixed value &, we may
peaks take the form of sharp edges, so the meniscus stopgpect that a small but finite number of the meniscii through-
(becomes trappedessentially right on the edge. If the pres- gt a sample are just at the end of the raf@jeso that any
sure drop increases further, a menis¢ssch asB in the  |ocal perturbations in the capillary pressure may lead to
figure) will bulge while its contact lines remain fixed to the spontaneous motion of the contact lines. This is always true
edge until finally its curvature is reduced to where it mayand in this sense our coarse-graining effort can only be con-
descend to the left at the proper contact angle. Similar thingsjdered approximate. Nonetheless, the majority of meniscii

can be said for a right-moving meniscus except that the exjj|l be stuck on asperities at pressures well within the range
ternal pressure drop must be lowered and the menistieh ().

asC in the figure must become more flat in order to over-
come the asperity trap and descend to the right with the
proper contact angle. Thus, all meniscii become trapped on
asperity edges and can tolerate a certain rangB.ofaria- We imagine an initial state in which no flow is occurring.
tion before they migrate away. We now estimate this rangeForces are then applied and flow begins. The purpose of this

A. Fixed contact lines

B. Applied forces
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subsection is to identify these applied forces as gradients afected throughout a sample. The qualitative idea is that a
the average pressures in each sanipteaveraging volume  given value of 7/ (r) (say positivé in some pore ons

Our initial state is defined by both fluids having continu- = + /2 has an influence at an interior point tigtfalls off
ous paths across each sample and by the fluids being everyith distance from the interface, aril) is at least partially
where stationary. In this state, gravity alone is generating theanceled by a negative value coming from some other pore
pressure distributions and the fluids have adjusted their mesn s=+L/2. Thus, for sufficiently thick samples and for
niscii (all trapped on asperitiggo accommodate the pore- sufficiently connected fluidéso that a given interior point is
scale capillary pressur@ve label the two fluids as andb  connected to many pores on the disk face without crossing

throughout the entire paper any meniscii we believe it is evident that the assumption can
o be formally justified and we do not pause to do so here. In
Pe(N)=Pa=Pot(pp—pa)g-T, (4 passing, one may note that if this assumption were not valid,

then standard laboratory flow experimerita which ;"
=0) would be meaningless for applications to earth prob-
lems.

The local (applied pressure at every point within a
esample can thus be written

whereg is the acceleration of gravity, is the distance vec-
tor, andp, andp, are the fluid densities. The constant dif-
ferenceP,— P, is thus the capillary pressure at the arbi-
trarily selected origin.

To get flow, pressure gradients must be applied. In th
earth, for example, we might inject or extract fluids at se- AP
lected places. If flow is occurring in an averaging volume ps(r)=p;+ TS+ () (7)
somewhere (possibly far removed from the injection/
extraction points the fluids experience applied Pressuresg ) ibt the localapplied pressure gradient is
that are different on one side of the volume as compared to
the other. In general, the pressure drop of flaiecross the AP; .
volume will be different from that of fluid. These pressure Vps(r)= TS+V7Tf(r) 8
drops are the macroscopic pressure gradients in the theory.
The injection process will also change the average pressutg,q our assumption is the boundary condition
in each sample and both effects must be properly allowed
for. 0, s=+L/2

To fix a concrete image, imagine an averaging volume (1) = 0 s——L/2
that is in the form of a flat slab, say a circular disk with ' N :
radius much greater than thickndsso that only the bound-
ary conditions on the flat faces need to be worried about. Th

(C)

Thus, the applied forcgslue to the distant injection procgss

SRR . an be modeled within each sample as uniform force densi-
disk is oriented so that the maximum pressure drops are pay;

allel with the axis coordinats. If this disk truly corresponds es
to a region within the eartlfand not a laboratory sample AP; .
then the applied-pressure boundary conditions on the flat Fi=— s (10
facess= *=L/2 can be written {=a or b)
— N In order to obtain a theory that lets the material properties of
D/(F)= P+ APi/2+ i (r), s=+L/2 (5 the earthias well as the distant injection evefik the values
f pi—AP{/2+ (1), s=-L/2, of F; acting in each averaging volume, we must next connect
these forces to gradients of the average fluid pressures.
where This last step is done using the definition of the derivative
of a volume-averaged quantif,11]
— 1
P v prde (6)

— 1
V(<prf):vJ&E np;dS, (11
f

is the average pressure throughout the porfiqrof the av-
eraging volume occupied by fluid The AP; are the average wheregs; is the volume fraction of each fluid,
pressure drops across the disk so that the functienér)
are the spatial deviations created by pore-scale details of the (1= EJ’ dv— Vi(r) 12)
flow process and which average to zero on each disk face. e VJa, v

We now make the assumption that the average flow in an
averaging volume is unaffected by the presence ofthér) ~ and wheredE; is the portion of the exterior surface of the
on the disk faces. These flow-induced deviations play arveraging volume occupied by flufdand having normah.
important role within the sample and must be modeled therdhe saturation gradient is defined
so that the incompressible flow may accelerate and deceler-
ate through constrictions. Our assumption is that taking their v :Ef ndsS (13)
boundary values to be zero on the disk faces will not affect LAY, JE;
the average flow.

This assumption could be formally justified using Green’sand thus exists when there is more fldidurface area on
functions and the notion that the fluids are multiply con-one side of a sample as compared to the other.
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For our case of an averaging disk, if the boundary condi-
tions (5) and(9) are used in the definitiofil1), we obtain

L AP,
s V(eips) =pss Vi + Tq)fi (14

where the saturation gradient is

Al — AL

AL (19

§V<Pf:

and whered; is an external-area measure of saturation

Al +A;

FIG. 2. A saturation state in a small pixel well behind the mac-
Here, theAfi are the total areas of fluiflon the disk faces roscopic invasion front. Fluidh is the nonwetting invading fluid.

s=+L/2 while A is the area of each disk face. The meniscii in a state of no applied pressure gradients are denoted
From Eq.(14), it follows that for arbitrary disk orienta- With solid lines while the meniscii once the drainage is established
tions are shown as dashed lines.
_ AP; . there will be a macroscopic invasion front separating a re-
<prpf=<I>fTs. (17 gion of partial saturation from the region completely satu-

rated by fluidb. The topological nature of this macroscopic
invasion front (e.g., whether it has a fractal dimension
greater than the Euclidean dimension 9ofi® a function of
D= g;. (18  the nature of the invasion experiment as will be briefly dis-
cussed below.
Imagine that an averaging disk is sliced parallel to its two For modeling purposes, we now discretize the earth into
end faces at many points along its length. The area saturatic#D pixels. Each pixel represents an averaging volume or
A¢/A is then measured on each slice. The condition for Eq.'sample” as discussed in the preceding section. We can
(18) to be a valid estimate ob; is that such slice saturations distinguish between three types of pixe(B: pixels interior
must scatter about the straight line connecting the end-fac® the macroscopic front in which both fluids percoldie)
vaIuesA;’/A andA; /A. Sedimentary rock will typically sat- pixels exterior to the front that are entirely saturated by fluid
isfy this constraint. One must have large nonsystemati®. and(iii) boundary pixels that contain within them the mac-
variations of the porositye.g., voids that cluster on one side roscopic front.

In the following, we assume that

of a sample relative to the othebefore this assumption If injection were to resume at sufficiently low rates, the
breaks down. laws that we propose in this paper would be capable of mod-
Thus, we may finally write the principal result of this €ling the flow everywhere throughout the region of interior
section, pixels. However, the boundary pixels are experiencing
contact-line movement and thus obey different laws. Thus,
Fi=—Vp;. (199  the macroscopic front represents a special boundary condi-

tion surrounding the interior region where our theory applies.
In other words, any injection/extraction process that result§Ve will not consider here the nature of these invasion-front
in flow is associated with uniform-force densities acting onboundary conditions, but they are the key quantities that de-
the fluids in each averaging volume and such forces can bne the saturation and saturation gradient of the two-phase
identified as the macroscopic gradient in the average appliediansport backbones being formed within the boundary pix-
pressures. It is the purpose of the macroscopic theory to pr@ls. Once the initial saturation and saturation gradient are
vide rules for how thes are distributed through space and laid down in a pixel, subsequent saturation variaticifie
time. ones modeled in this papewill be dominated by stretching
of the meniscii with contact lines remaining fixed, as is de-
picted in Fig. 2. Thus, the theory of this paper is providing
the rules for how the invading fluid arrives at the evolving

We finally discuss how the theory developed in this papemacroscopic invasion front.
is to be used in the context of a typical three-dimensional To justify this image of the invasion process, we make
(3D) invasion problem. These comments are essential in oreonnection with the 3D drainage experiments of Frettal.
der to understand the goals of the subsequent analysis. [12]. These authors inject a nonwetting fluid at a fixed point
Imagine a situation where fluigis being injected from a within a 3D porous material that is initially saturated with

well into an earth initially saturated with fluiol There might  wetting fluid. They visually monitor how the saturation
also be a second well some distance away in which fiugl  structure develops around the injection point and observe
being extracted. If the injection/extraction is stopped afterthat such structure is a function of the injection rate. At very
fluid a has invaded only a small distance into the formation,low injection ratescapillary numbere<10~ %), an irregular

C. Connection to invasion problems
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fractal structure develops, while at higher rates(0 %), a z=(x,y)
much more regular ball-like structure is observed. But even
for the uniform ball structure, the invading fluid occupies
less than half the pore space of the interior region so that the
interior pixels are all traversed by both fluids.

This dependence on injection rate can be understood as
follows. At sufficiently low rates, there will always be one FIG. 3. The surfacez={(x,y) represents the position of the
boundary pixel that presents the least capillary resistancfuid interface at any instant while the initial interface position is
(largest percolating pore radiuand the injected fluid will  denoted byz=0. The curvilinear coordinatesandy denote posi-
traverse this least resistant pixel. Since there is quenchetbns along the initial interface.
disorder in the material, the spatial location of this least-
resistant boundary pixel at any instant will be random so thagormaln). In addition to these boundary conditions o,

a fractal structure tends to develdihis corresponds to the the no-slip flow conditionv=0 holds on all grain surfaces
invasion percolation model As rates increase, multiple 4G .

boundary pixels must simultaneously be invaded in order to  As stated, we consider an initial state of no flow in which
accommodate the injected fluid and this is possible becausgravity alone produces the static pressure distributions

many boundary pixels now exceed the capiIIary-resistancp?(r):pf_pfg, r. This allows the total pressure to be writ-
threshhold due to the elevated injection pressure. Thus, ggp

injection rates increase, a more regular distribution of bound-
ary pixels surrounding the injection point will be invaded
and this leads to a more ball-like structure.

The point for our work here is that at any instant it is the _
boundary pixels that are always able to provide the leashereF(t) are the uniform-force densities ape(t) are the
capillary resistance. The interior pixels have already beetniform pressures applied to each averaging volume by some
traversed and thus contain meniscii that are necessariffistantinjection process as discussed in the previous section.
trapped on more resistive parts of the pore space. This image The main role of the static state in the present argument is
of the invasion process works for either drainage or imbibi-to fix an initial position of the fluid interface. For the argu-
tion but will ultimately break down at sufficiently high- ment, we assume this interface position is known. Once

Pe(r,0)=Po(r)+ps(t) —F¢(t) T+ m(r,t), (29

injection rates. ps(t) andF(t) are applied, the theory is to supply rules for
how the interface will displace as well as give a complete
lll. TWO-PHASE FLOW AT THE PORE SCALE solution to the flow problem.

_ ) _ _ As shown in Fig. 3, we denote the normal displacement of
With the above ideas in mind, we now lay out the the interface from its initial position a% In Appendix A, we
boundary-value problem controlling the flow in each averagyyork in the (x,y,z) curvilinear coordinates shown in the
ing volume(or interior pixe). The region() occupied by an  figure to obtain an exact expression for the nonlinear differ-

averaging volume is partitioned into three pafls=(.  ential operatoiH (¢). For now, we simply write
+Q,+ Q4 corresponding to fluida, fluid b, and the solid

grainsg. The surface9(); (f=a or b) enclosing the fluid H(Z)=H,+h(0), (26)
regions(); also consist of three parts,

whereH, is the initial curvaturgrelated to the static pres-
sures agrH,= P?) while the operatoh(¢) gives the change

in curvature due to the applied forces. The rate of displace-

ﬁQf:é’Ef‘FO”Gf‘FO"F, (20)

wheredE; is the surface coincident with the external surface _ i
of the averaging volumédthe entrance and exit surfages Ment functionv, is given by
dGy is the surface coincident with the grain surfaces, @rd N
is the fluid interfacgthe menisci. v =n-23{/dt. (27
The equations governing the two-phase flow are
As seen in the Appendix, when displacement cannot be con-

V-T¢+pig=prdve/at  in Qg (21)  sidered small, the operath¢¢) is extremely nonlinear as are
the expressions for the interface nornmaand tangent vec-
Ti=—Pe+ Vv +(Vvp)T] in Q, (220 torst, andt,. Thus, becausg is one of the unknowns, this
two-phase flow problem can be highly nonlinear due to the
V.vi=0 in Qy, (23 boundary conditions oaF.

_ _ Such nonlinearity means that the response dq;f toan-
[vi]=0; n-va=v,; n-[Te]=oHn on dF, (24  not pe resolved from that due . However, it will be

whereT; is the total stress tensor in the fluig; is the total Zhowg éhit for Iglven \lﬁllues of tt)hahth_e V'S}COUS. flow pro-.
pressure,; is the viscosity, is the rate at which the in- 9Uc®d byFy only weakly perturbs the interiace in compar-

terfacedF is displacingH is the interface curvaturés de-  SON to the possibly large displacements producedppy

fined in Appendix A, o is the surface tension, and the brack- Thus, the result of the perturbation analysis of the following

traversed froma towardb (which is the sense of the interface be solved in two stepsi) apply thep; while keepingF;
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=0 and determine a new interface position, tiighadd on  cosity ratioy controls the amount of viscous coupling across
the F; to determine the flow fields and addition@mal)  the interface(as y—0 such cross-coupling becomes negli-
interface displacements. gible), while the rate numbey is the ratio between the time
To obtain this procedure, the dimensions must first bea fluid particle spends in a pore and the applied-force varia-
removed. We allowF,(t) andFy(t) to have different ampli- tion timetg (asy—0, one can assume the flow is always in
tudes and direction, and to vary over time scdleshat are  the steady staje
slow enough that inertial effectsuch as capillary waves and In the following section we perform a perturbation analy-
viscous boundary layersremain negligible. These forces sis usinge as the small parameter. It is thus important to
have a characteristic valug that can be related to the pres- establish careful estimates of the size of the other dimension-

sureAP applied at an injection/extraction point as less numbers in comparison ¢éoTo do so, we first assume a
maximum applied pressure consistent with the fixed contact-
F=APIL, (28)  line condition of Eq.(3),
where £ is a macroscopic length such as the distance be- AP=gal/L. (39)

tween an injection point and the distant invasion front. We

take AP as a characteristic measure of the. Last, we Next, since the time variation of the macroscopic pressure is

define a characteristic pore sizeg. due to diffusion, we propose a characteristic relation between
With these identifications, the dimensions are now reir and £ of the form

moved using the following definitions in which primed fields P 2

have their dimensions while unprimed fields do not: te= LD =7aBaL Tk, (40

where D is the two-phase-flow pressure diffusivity of the
porous material. Here, we have assumed flaitb be the
invading fluid and determine® using our final laws. We
Ta V! S 1 ! have thatD =k/(7,8.), where », is the viscosity of fluid
Fr2 V7 a, k is the permeabilitfwe do not multiply by theO(1)
(29) relative permeability in this order-of-magnitude estinjate
and B,=d¢,/dP. and controls how saturation changes
H=/H", (=17, when capillary pressure changes.
Upon introducing these estimates into E88), we obtain

Fi=FF;, pi=APp},

Vf:

V=/V', t=t'/t.

Thus, the dimensionless-flow problem is defined as a=—~=¢€ and y=

15 0B’ (42)
VertF=0in Oy, B0 o applied forces that do not migrate contact lines behind
V.v=0 in Q, (31) the invasion frontithe regime of this pap):rv_ve see thak _
can be an extremely small number. Assuming the following
= —al + Vv (V)T in Q,, (32)  characteristic valuesr~10"° Pam, 8,~10 ° Pa !, and
k~10 'm? (high permeability, we find that k/(o ;)
m=—mpl + Y[VVpy+(VV,)'] in Q, (33 =103 m. Thus, for diffusion through high-permeability
laboratory samplesC~10"1 m, we havey=10"2, which
[vi]=0 on z=¢, (39 can be considere@(1) relative toe. However, the situation
of practical interest is when rocks are experiencing diffusion
N4 over distances in the earth. For such problems, we easily
N-Va=xN-z_- on z={, (39 enter the regime wherg=0(e), as will be discussed in
detail in the final section.
n-[#]-t=0 on z=¢, (36) We will perform the analysis here assuming=0(1).

The modifications of the final laws for the case where
€ =0(e€) will be obvious since all thegy dependence will ap-
ein-[7]-n+(Fo—Fa)-r}+ —(pa=pp)=N(¢) on z=¢  pear explicitly. Last, the viscosity ratip will also be taken

and is completed by takingr;=0 on the external faces of  IV. ASYMPTOTIC SOLUTION OF THE PORE-SCALE
the averaging volume. PROBLEM

Four dimensionless numbers appear, . . . -
In order to arrive at the perturbation scheme in an efficient

}"/5 7 Na /e manner, let us begin by defining, some&vhaﬁout of the blue,
€, 7T 77_a X= e a=r- (38 the leading-order problem iawhenP_.=p,— p, acts alone;
i.e., setF;=0 in Egs.(30)—(37) and ignore any term multi-
The capillary numbere controls the degree to which the plied by e. This capillary-pressure problem is defined as
interface is displaced by viscous forcirigs e—0 the vis- b )
cous forces are incapable of moving the interjatiee vis- V.750=0 in Qy, (42
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[Vio]=0 on z=¢,, (43
n0~v§0=)(n0-2(9—,[O on z=¢,, (44)
No [ 7ol 1,=0 on z=¢,, (45)
Pd()=pa—Po=h({,) on z=¢,, (46)

where the superscrif indicates that these fields are due to

capillary pressure alone while the subscript O indicates that

they are leading order ia. The reason for such a notation
will be seen shortly. Although we cease to write dltv
=0 and the constitutive laws far, they are to be understood
as part of the problem statement.

The key property of these equations is that the differentia

equationh({,) = P.(t) in the boundary conditio46), along
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FIG. 4. The two sets of surface coordinates and the fluid inter-
face in three positions: curvA, the initial static-state positiom
=0; curveB, the position wherP.=p,— py, acts alone and defined

={, in the initial coordinates or,=0 in the new coordinates
fxo Yo,Zo); and curveC, the actual position wheR. andF; both
act.

with the condition thatZ,=0 on all contact lines, is suffi-
cient to determine the displacement function

V'Tf+Ff:0 in Qf, (50)
gozgo(xry;PC(t)) (47) [Vf]=0 on Zo é«v , (51)
which has, in general, a highly nonlinear dependenc® on 3 P
Given this function, the normal, and tangent vectors, of =yn- ( Lo 047 Y b ) on z,=¢,, (52)
z={, can be determined which permits the flow field excited ot ot
by the interface displacement of E@4) to be uniquely de-
termined and expressed in the form n-[#]-t=0 on z,=¢,, (53
dxdy. ALo(X,Y;Pe) e{n-[7]-n+(F,—Fa) - r}+Pc=H({,) on z,=¢,.
P _ .
Viar=| | T My P =T e (54
(48)  The surface,= ¢, is the final unknown position of the fluid

interface. The subscript indicates that this part of the dis-
placement is due to viscous flow. The known displacement

vectorz{, is now to be understood as a function &f, (y,).

To obtain asymptotically correct results through all orders
of €, we must first continue the boundary conditions from the
unknown surfacez,=

This solution is linear iP./dt but extremely nonlinear in
P.. Upon averaging over the voluné&;, (i.e., the region of
fluid f in an averaging volume when the interface iszat
={,), we have

9P {, to the known surface,=0 by
(vfo)z)(mf?c, (499  means of a Taylor-series development aroage 0,
- . . Vi
where the transport coefficient; is thus defined as [vi]+ 7 gyt , (55)
0
9Lo(X,Y;Pc)
f J &=ay M(r|x,y; PC)— Ng ) ~0lo  ~ Ly
. + —C 4+...|= 7
Q0 hchy n-|{ vy 7 Ly xNn-| z i Z, rak (56)
We will discuss the meaning of the; later (they only exist
in the presence qf a sa.turati.on grad)ev%m important prop- _ n~([1-f]+ &_f et -t=0, (57)
erty of this flow, if it exists, is that it ceases once the capil- Z
lary pressure ceases to change.
Given these initial results, we now treat the complete flow a7y _
+|—|¢,+ ‘n+e(F,—F,) - r+P.=H .
problem by means of a perturbation analysis using the cap ([T] az, b Nt e(Fo=Fa)-r+Pe=H(Z)

illary numbere as the small parameter. In order to properly
affectuate the analysis, it is convenient to first define new Il flow field h bound di b
surface coordinatesx(,y,,z,) attached to the capillary- Al flow fields in these boundary conditions are now being

pressure surface= ¢, determined by Eq47) and as shown evaluated a(,or acros$ z,=0. Due to the s_moothness of the

in Fig. 4. In these new coordinates, the surfa@eo corre- Iow-Rey_noId s-number flow, such expansions can be consid-
ered uniformly valid.

sptonds tzz Lo in the old coordinates and sp=no, Xo We can at last perform the perturbation expansions by

— xo» an yO_

S _ means of the asymptotic series
We start afresh and restate the entire dimensionless-flow

problem using X, ,Yo:20),

(58)

Vi=Vio+ eVi+O(€?), (59)
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7= 7o+ €711+ O(€2), (60)  where the source terrm,-[70]-Z, has contributions from
, both the capillary-pressure flow, and the Stokes flow}, .
{y=€l+0(e%). (61 Along with the no-slip condition at the contact lines, this

linear differential equation allows the first correction of the
interface displacement due to viscous flow to be expressed in
e separated forni; = §E+ gl", where

There is no zeroth-order term f@t, because this displace-
ment is produced entirely by viscous forces. We also hav
the following results from Appendix A concerning the sur-
face properties of,=¢,,,

b
-7 _ 2 ~
N=2,—€V{;+0(€%), (62 Zogi(xo’YOyt):;aZf(XO!yO;Pc)’Ff' (74)
~ L1~
t=Xot ehxo&_)g(lzo"' O( 62): (63)
o
ot §1P(XoaYO7t):XZ(X01yo;Pc)(?Pc/(9tv (75
t,=Yo+ ehyo&—ylioJr O(e?), (64)
0

and where the response tensoy(x,,Y,;P.) and scalar
H(Z,)=H(0)— e[ V21 + &27,]+0(€?), (65  Z(Xo.Yo;P.) are, as well, nonlinear functions &X;.

_ _ The ! problem is now stateand after this we stop
whereH(0) is the known curvature of the capillary-pressure

surfacez,=0. When all of this is inserted into the governing
equations, we obtain a hierarchy of linear subproblems in V-7,=0 in Q, (76)
powers ofe each defined in the same known domalhg,

and with boundary conditions on the same known surface
z,=0

: ov
The €° flow fields separate into two contributiong, [Vii]l=— 4 (9—f0 on z,=0, (77
=V}, + vk, which derive, respectively, frori) the capillary- z
pressure problem of Eq$42)—(46) that has already been
treated; andii) the Stokes-flow problem given by Py
~ ~ a0
V. dy+F=0 in O, (66) Zo'Val_Vé’l'VaO_glzo'a_Zo
F1_0- _ d “ 14
[Vi6]=0; on z,=0, (67) +x %—zo-véz%) on z,=0, (78
Z,-Vi,=0 on z,=0, (68)
Zy-[ 7] (X, and y,)=0 on z,=0. 69 . - ~ 9L1n o
o Lto] o and o) ° (©9 2o [ria] o=V 3-[i0)- Koo 3 2o [700] 2
The unique solution fov}, can be expressed as ?
~ | dT5g| -
b — {120 ?fo Xy 0n z,=0, (79
Vio(r )= 2 Nipo(r;Po)- Fra(t), (70 °
f'=a

where the four response tensad¥s; (r;P.) are all highly  where only thex, component of the shear traction boundary
nonlinear functions oP.. Upon averaging this flow over the condition has been given but there is an analoggusom-
domain of(Q¢,, we obtain the macroscopic laws ponent as well.

This problem is completely linear in the first-order fields.

F b All terms on the right-hand side of the boundary conditions
(Vio) = E L -Frry (71) are known and act as flow-inducing forces. Due to the lin-
f=a earity, the response from each such inhomogeneous bound-
where the transport tensors are defined as ary term can be determined independertilg., with the

other inhomogeneous terms set to zeemd the results
1 3 _ summed to give the total response. Due to the separations
'—ff'zvfQf d°rN 1 (r;Pe). (72 =P+ ¢ andvy=\E+V} already treated, each term in the
° boundary conditions is seen to be proportional to one of the
The symmetry properties of these transport tensors will bdive following macroscopic-forcing formsta) FFy , (b)

addressed in a later section. XIF¢lat, (c) xFeaP.lot, (d) x29P./dt, and (e
The normal-stress boundary condition involving td&  x?(dP./dt)?. For example, the boundary ter;wgf/at in
fields is Eq. (78) gives rise to both formg&d) and(e). Thus, the mac-

R R roscopic transport associated with teé problem can be
V20 + 0=~ 24 [ 710) - Zo+ (Fa=Fp) -1, (73)  expressed as
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b b
aQDa_Xf dXodYo |~ <9, iy ~0Ls
<Vf1>:f§a fga 3Aff/f//(PC):Ff/Ff// W_V hxohyo O'ZW—F € W Vgl'zﬁ .
X (86)
+x E Bis/(Pe)- dF¢ /ot Due to the known force dependences{gfand {;, we can
f'=a immediately write the forms
b
d P P\ ?
+x 2 Cir(Po)- FrrdPolot+ x[dy(Pe) T So(Po) o + x2S Pc>( )
f—a ot ot ot
+ei(Py)dP./dt]aP/ot, (80) b IF; 9P,
tex2 | si(Po) r TP Frpc|. (87)

where the eight transport triadird-order tensopszA¢s:¢n ,

the eight transport dyad3; and'Cff,, and Fhe four trans-  The various coefficientsSy, S;, s, andt; are nonlinear

port vectorsd; andey are all nonlinear functions d?c. An fynctions ofP,.. Both S, ands; can be readily measured in

enormous number of transport coefficients have entered th&laboratory; however, the measurement;afndsS; is likely

€' contribution and the situation becomes exponentiallytg be much more subtle. We underline that any such mea-

worse as higher-order contributions are considered. surements must be performed on samples containing perco-
Before we treat the symmetry properties of these laws a”ﬂating fluids when bottP,=0 andF;=0. This expression for

summarize them, we first establish the macroscopic fluid;,, /st is what closes the system of macroscopic equations.
conservation laws and consider the connection betWegn

and what is actually measured during flow experiments. VI. ELUID FLUX
V. FLUID CONSERVATION The issue addressed here is the connecti(_)n between the
volume-averaged flowv;) and the fluxJ; that is actually
Both Whitaker[8] and Auriault[9] have addressed the measured during experiments. Auria{8] considered this
fluid-conservation laws using volume-averaging argumentsgconnection only for steady-state situations in which the in-

so just a brief outline is given here. terface is not moving. We discuss here the more general
The definition of the derivative of a volume-averagedsituation in which saturation levels are changing in a sample.
guantity is again used to write The relation between a volume average and a flux is ob-

tained by volume integrating the identityV - (vr)
1 =r(V-v;)+v;-Vr=v; to give[13]
v.<vf>=vLEn.vfds (81) v f
f

1 1
(vf>=vf n-virdS+ Vf N¢-vordS. (88)
The incompressibility conditior¥W -v;=0 is then averaged 9B IF

and the divergence theorem applied to obtain Note that from Eq(82), this definition of(v;) is independent

1 1 of the origin ofr. However, the physical interpretation of the
0= _f n-v;dS+ _f n;-v,dS, (82)  two surface integrals is affected by the choice of origin. In
V] e Vi what follows, we assume has its origin at the center of the
averaging volume.
where ongF we haven,= +n while n,=—n. The integral Appealing to any specific averaging volurfgich as the
over F can be identified as the time rate of change of thedisk considered earlipdemonstrates that
fluid-a volume fraction, L
Ji= —f n-virdS (89
V J o,

dpa 1

o =vLFn~vadS (83

is the average rate at which fluids fluxing across all exte-
rior surfacesyE of a sample. The flud;, as defined by Eq.
(89), is something that can be experimentally observed and
measured in the laboratory. The other contribution g

so that the fluid-conservation laws take the form

P,

V- (v,)= - (84)  has an interpretation analogous to E8g),
%=£ n-v,rds, (90
e at Vi)ge @
V()= + ata. (85) !

where the point, is a measure of the center of the flud-

For incompressible two-phase flow, the total fluid flux is distribution in an averaging volume and is defined as

conservedV - [(vy) +(v,)]=0. 1
We can use the boundary conditidf2) in the above ra= _f rdV. (91)
definition of 9, /dt to establish througld(e) Vi,
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We will consider howdr,/dt can be experimentally mea- P,
sured momentarily. (Va)=Laa FatLap Fot xmMa—-
The relations we seek are thus of the form
b

oL JF
+e>, X sAarp FrFi+ex X [Baf'_f
dra f=a -4 f=a at
(Va)=Jat+ —7, (92
P, o P P\ ?
ary
(Vo) =Jp= - (93 9P,
(Vp)=Lpa Fat Lop Fp+xmp—=
Since Jr,/dt represents the moment of the saturation b b b IF¢
changes across a sample, the volume-averaged flow can be +ff2a 2 3Apsr 1R Pt EXfZa [Bbf'y
taken as the measured flux only if the local saturation is Tof=a N
changing rather uniformly across a sample or if the interface JP¢ 5 JP. P\ ?
is in a steady state. We underline that the average figy +Co Fr— |+ exT do— +60(7) . (99

cannot be directly measured in the laboratory. What is nor-
mally measured is the flux across entrance and exit surfac&Sne may note that it is only the coefficients involving the
of a sample, which is equivalent to measurihdthe average time rate of change of the forcéthe coefficients multiplied
flux over both the entrance and the exit surfa@®lde,/dt by y) that require an independent measurement of the satu-
(the difference between the entrance and exit fluxes ration momentdr,/dt in order to be experimentally deter-
Because of the form of the conservation lai®) and  mined.
(85), we want to express the transport laws of the theory in  These are complicated unwieldy laws. Since for practical
terms of(v;). However, for all of the coefficients in such earth problems the order contributions will commonly be
transport laws to be measurable in the laboratory, E28.  neglected, we elect to address here only the symmetry prop-
and(93) show that we must have a way to measarg/dt.  erties of thee® contributions. It will be demonstrated that
If the fluid densities are differentoq# py,), the followingis | =L , L,,=L., andL,,=L],. Although thee' sym-

one such measurement procedure. ~ metry properties are not considered, it will be demonstrated
The center of mass.y, of the fluid-filled pore space is that the flux that is quadratic in the pressure gradients vio-
defined as lates reciprocity.

Before addressing the tensorial symmetries, we begin by
noting thatm,=—m,. We have stated earlier that time;

f pardv+f pprdVv vanish in the absence of saturation gradients. These coeffi-
_ 70 Qp cients control the flows excited by a uniform change in the
rcm_ (94) .

VapatVoeppp capillary pressure throughout a sample. In the presence of a

saturation gradient, there will always be more meniscii on
one side of a samplgay the low-saturation sigiéhan on the
_ Palatpolp (95) other. So ifP; increases uniformly, there tends to be more
@aPat PpPb influx of the nonwetting fluida on the low-saturation side
than on the high-saturation side resulting in a net average
flow (v,) throughout the sample given lg,dP./dt. At the
same time there will also be an oppositely directed floy),
and because there are no macroscopic-pressure gradients
driving such incompressible flow, fluid conservation requires
that(v,)=—(v,) or, equivalentlym,=—m,.

We write op,(t) = ¢ — ¢,(t), whered is the constant porosity
in a sample, multiply both sides of Ed95) by ¢.pa
+ ¢oppp, and then take the time derivative to obtain

dry . Jpq $pp Il em
Tt Fem e e a5 (96) A. Reciprocity of the linear laws

In a companion papdi6], we show how Onsager theory
may be used to address the reciprocity question for this and

m rement ofr. /dt has been reduced to m ‘ina th other two-phase flow problems. Here, we use a classical ar-
easureme a as been reduced to measuring eIg?ument that exploits nothing but the self-adjoint nature of the
changes in the center of mass of the pore space. Since t

rains do not redistribute. this can be performed bv placin ¢© Stokes equations and that is nearly identical to the famil-
gra ' P ned by p 9 & wave-field reciprocity arguments used in electromagnetic
honzontgl sample on a support that.|s sensitive to the sanh4] and elastodynamid15] theory. Using similar argu-
ple’s weight at various points along its length. .

ments, Pridd 16] has treated the reciprocity of the electroki-
netic transport equations while Flekkfl7] has treated cer-
VIl. SYMMETRY OF THE TRANSPORT LAWS tain problems in hydrodynamlc_ dlsperspn._AurlaLQﬂ has
addressed the symmetries using a variational form of the
We now write out the transport laws obtained earlier, argument.

We have used the fact thaitr,/dt=—dr,/ot. Thus, the
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We begin with the relation between the “cross” coeffi- However, periodic boundary conditions are inconsistent with

cientsL,, andLy,. Let us definex flow fields to be those

the presence of saturation gradients. The boundary contribu-

created wheifr,# 0 andF,=0 and g fields to be those when tions E, andE, will also vanish if we imagine that each of

F,#0 and F,=0. Throughout what follows, we keep.

the pores lying on the entrance and exit faces are deformed

=const. Consider the following scalar products involvingso that they are each locally straight conduits. If we do this in

sucha and g fields:

VB [V-7+F,=0] in Q,,
VE[V-#£=0] in Qg, 9
VE-[V-m£+F,=0] in Qp,,
VE-[V-7£=0] in Q. s

Upon using the identity- (V- 7=V - (7 Vv)—Vv:7', noting
that 7= 7', and adding, we obtain
FarVB=V [ # Vi~ VA +VVE
VWi in Qu,

(101
Fo-VE=V-[5- v~ 75 Vi ]+ Vi

—VEir in Q.

Now Vv2:72=Vv%:7% as can be verified using the explicit

form 7= — 7l + 9[Vv+(Vv)T] along withV-v=0 and the
fact that only the symmetric part & v contributes to the
double-dot products.

Thus, upon integrating Eq$101) over their respective

such a manner that leaves both the total pore area on the
faces and the total flux rates across the faces inva(thistis
always possiblg then the nature of the flow throughout the
majority of the sample will not be affected if the sample is
sufficiently large(as can be justified using Green'’s tengors
In each of the small straight entrance conduits, however, the
integrands of botlE, and E, vanish. Such an argument is
similar to Saint Venant’'s principle in elasticity theory and
only requires that the local pore reconstructionsdéhare
over length scales much smaller than the size of the sample
being considered.
Having ignored bothtE, and E,, we next introduce the
boundary condition$68) and (69) of the « and 8 problems
into the remaining integrand ovep=0. It is seen that the
integrand vanishes exactly so that
Fa'Lab'Fb_Fb'Lba'FaIO- (107}
By systematically varyind-, and F,, to align with the prin-
cipal directions of whatever coordinate system we are work-
ing in, we can finally conclude that,, =L, as desired.
Similar arguments establish the symmetry of the tensors
L., andL,,. We only sketch the argument far,, because
the argument and conclusions 1og;, are identical. For ther
problem, instead of considering the fields generated-py

domains, using the divergence theorem, introducing macroalone, we now consider the fields generated by two uniform

scopic flow definitions such a@ﬁ)zvflfgaovgdv, and
noting that thee® contributions of the transport law87) and
(98) with P.=const give

Fa'(V2)=Fa-LabFp, (102
Fo (Vo) =Fb-Lba Fa. (103
we then obtain by subtraction
Fa-Lap Fo—Fp-Lpa-Fa
1 [ dx.d
—Eg g thhjz
X2 [y Ve Vet Ve -Vl (109

The surface integrals over the rigid grain surfa@ést arise
from the divergence theorem and are not shpwanish be-
cause of the no-slip condition. The contributids andE,,
are the integrals over the external surface given by

1

Ea=—f n-[75-va— 74-v4ldS, (105
V),
1

Ebz—f n-[#-vf—£-vlds (108
V ﬁEb

We would like to argue that these external surface integrals
are always zero. If the sample is required to have periodic
boundary conditions, then these integrals vanish exactly.

force densitied,; and F,, that have arbitrary orientation
and magnitude but that are both confined to the reglggp.
Defining a4 and «, fields as those generated frdf, and
F.., respectively, we form the following products:

Ve (V.- #14Fu=0] in Qg

VALV 724 F,=0] in Q,

VR [V-73'=0] in  Qp,,

VEL[V-72=0] in Q.

If we add and use the identities established above, then

a2 al _ 2 ,al 1 ,,a2 H
Va 'Fal_va 'FaZ_V'[Tg “Va _7§ Va In an:

0=V [ vi? =2 vp'] in Q.

Each of these is then integrated over its respective domain,
the divergence theorem applied, and the results added. The
surface integrals over the grain surfaces again vanish, as do
the integrals over the external surfaces. If the definition

(V;')=Laa Fqj is introduced, where=1,2, we then arrive at

Faz‘ Laa' Fal_ Fal' Laa' Fa2

1 dXOdyO,\ a2 al 1 a2

+Tgl'ng_ng'Vgl )
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Upon appealing to the boundary conditions of theroblem . . a(aa_a))
and using the fact thdt,, andF,, are arbitrarily directed, (Vp)=—L2p-VPa—Lpp VPp— xMy—————.
we obtain the symmetryaazL;a. An identical argument o
and result holds fot .

Thus, the steady-stat® (= const) linear laws controlling _ )
macroscopic flux of fluids andb follow “two-phase Darcy This represents a complete set of equations for the two un-

(114

laws” of the form knownsp, and p,,. All the coefficients Sy, m;, L) are
nonlinear functions oP.=p,— p, and all can be measured
(Va) _ Laa Lab) (Fa in a laboratory.
(Vo) \LL, Loy \Fp/ (108 The nonstandard coefficient is,, which, as discussed

earlier, owes its existence to the presence of a saturation
It is important to remember that the reciprocity holds only if gradient. To estimate the importance rof, relative to the

L ., is measured at the sank value asLy,,. standard Darcy-permeability terms requires, among other
things, an estimate of how many meniscii are present per unit
B. Breaking of reciprocity by the nonlinear laws volume of material and this depends sensitively on the satu-

ration history as well as the material type. We will not make
such an estimate here. Of interest would be direct experimen-
tal measurements ah,. Although possible to perform, we

We now consider the! transport laws whetP.=const,
which can be written

Vi) = (3L san- Fat 1l gan- Fp) - F are unaware of any such existing measurements.
(V1) = (3L taa Fat ol ran-Fo)- P A capillary-pressure laP(¢,) does not directly present
+ (3L tpa- Fat 3l tbp Fp) - Fp - (109  itself in the development. Only the time derivative of the

_ _ ~inverse of such a law has arrived,
If we write (v¢1)=(V¢1)(Fa,Fp), then cross-coupling reci-

procity can again be defined by considering whether - —
Fa-(Va1)(0Fp) =Fy-(Vp1)(F4,0). Using the quadratic ex- 9Pa _ Solp. _H)ﬁ(pa_ Pb)
pressions(109), the cross-coupling reciprocity is thus de- gt XootPa= o ot
fined by whether

. (115

If this expression is integrated in order to obtain a capillary-
pressure law, an integration constant arrives that corresponds
to the initial-state saturation of a given sample. Thus, there
qre always two distinct saturations that must be present in
any proposed capillary-pressure lai:the initial-state satu-
'r_ation and (i) the saturation changes induced by applied
forces. These two contributions will have distinctly different
gradients and so the common practice of replacing one of the
two pressure gradients W ¢, becomes a dangerous excer-
VIIL PRACTICAL SUMMARY AND DISCUSSION cise. It is our preference that such substitutions be avoided
We now summarize the laws in the form that they will @nd that the law of changéEq. (115] be directly employed.
most commonly be used in practical earth problems. ThéVe reemphasize that any laboratory measurements,of
goal is to make as clear a comparison as possible betwedRust be performed on samples with percolating fluids and
what we have learned here and the standard formulation @/er P ranges that do not migrate the contact lines.
outlined in the Introduction. The two cases in which either We will not attempt to quantify the possible functional

Fa:sLabb:FoFo=Fp- sk baa:FaFa- (110

for arbitrary values of the amplitudd&,| and |Fy|, such
reciprocity cannot be satisfied. In the presence of nonlinea
ity, such cross-coupling reciprocity is violated.

x=0(1) or x=0(e) will be presented. dependence of5;=Sy(P.). However, de Gennef3] has
suggested that percolation theory might provide a universal
A. The y=0(1) and e=0 laws scaling law of the form

As stated previously, the conditigpe= O(1) is typical of
laboratory situations in which a highly permeable material
experiences diffusion over small length scales. In this case,
the macroscopic laws take the form where the constara and the percolation threshoRff vary
from one sample to the next whikg~ — 0.6 (in three dimen-
siong is a universal constant. Our theory requires the contact
lines to remain fixed asP. changes so that saturation
changes can only be due to stretching of the meniscii. None-

5(561_&) f[heless, the grain surfaces in rpcks are _frac{ﬂa@ possess-
\E <Vb>:XSOT- (112 ing a continuous spectrum of different-sized nooks and cran-
nies into which, say, an oil meniscus could be pressed. Thus,
- fractal grain surfaces might be able to produce a saturation
(Va)= — Laa VPa— Loy VPur xm d(Pa— Pb) scaling law without significant migration of the initial con-
a aa” VPa™ Lab" VPp T XMa™5 ’ tact lines. However, new contact lines would necessarily be
(113)  created in such a process with accompanying hysteresis.

So=a(P.—P})°, (116)

(Pa—Pp)

J
V(v = xS (119
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Such behavior is not allowed for in the simple scaling law of 2=L(x, y
Eqg. (116) nor in our theory. We thus leave such speculation
to future work.

z € (x+dx, y)

z=0
B. The xy=0(¢€) laws
The conditiony = x,€, wherey, is O(1), is nowconsid- FIG. 5. Two neighboring pointg andx+dx on the initial in-
ered. Note that from the estimates of E4{l) we can define terfacez=0 and definition of the corresponding distance vectors.

Xo @S magnitude or more. Since the reginge=0(€) seems to be

K the rule rather than the exception in the earth, we arrive at
Xo= o5 (1170  the unavoidable conclusion that to model saturation varia-
TPl c tions at points behind the macroscopic invasion front,

In order to estimate the magnitude of this dimensionles§luadratic-force Darcy laws must be used.
number, we need to know how the permeabiktis related

to the pore length’.. Thompson 18] has used percolation ACKNOWLEDGMENTS
theory to obtain the following estimate: The authors are grateful to K. J. Mg for valuable dis-
/2 cussions and to Renaud Toussaint for pointing out an initial
k= ¢ (118 error in Sec. Il A. E.G.F. acknowledges support by NFR, the
226F"° Norwegian Research Council for Science and the Humani-

) . . . ) ) ties, Grant No. 115846/420. This collaboration was made
in wh|ch. /e is premsgly the prgakthrough _radlus in" a possible through a grant from the PICS program.
mercury-invasion experiment whikeis the electrical forma-
tion faqtor. The dimensionless product Z22& on the order  AppENDIX: PROPERTIES OF THE FLUID INTERFACE
of 104_|n sandstones a_nd, as su_ch, should not be neglected USING NORMAL COORDINATES
even in order-of-magnitude estimates. Thompson presents _
data from 50 sedimentary rocks having permeabilities that Before external forces are applied to the porous system,
span some six orders of magnitude to demonstrate the ehe fluid interface occupies a stable position and has curvi-
traordinary validity of this relation. Assuming as earlier thatlinear coordinatesx,y,z) attached to it where defines the
oB,~10 8 m, we use Thompson’s measurements’pand  linear distance normal from the interface andy are or-
F to obtain y,<1 for all 50 of Thompson’'s sandstones. thogo_na_ll cc_>ordin_ates tangent to t_he surface. The ledgibf
Thus, the regimgy=0(e) is more than just an academic an infinitesimal line element is given as
exercise. Indeed, it represents the more typical regime en- 5
; dx dy

countered in the earth. d2=|—| +[2

The two-phase flow laws in this slow-diffusion regime are hy

hy
interesting because in order to model the saturation changes
terms throughO(e) must now be included, whereh, =h,(x,y,2), hy=h,(x,y,2), andh,=1 are the met-
rical coefficients of the coordinates. In this appendix, we are

interested in characterizing the properties of the displaced

2
+dZ, (A1)

o
Vo (Va)= _Xofsow, (119  surface

— — z={(x,y) (A2)
V.<Vb>:X0650—a(p‘j; Py) , (1200  using such “normal coordinates.” The goal is to define the

mean curvaturéd, the normal vecton, and the tangent vec-
_ torst in terms of the function and the metrical coefficients
— — d(Pa—Pb) h, andh, . Normal coordinates are meaningfulsefu) only
=L, Vp,—L,p —a v : _
{Va) Laa-VPa=Lap VDot xo€My ot when the interface displacemeftis much smaller than the
initial radius of curvature oz=0; i.e., |{|<|2/H,|. If this
condition is not met, then the coordinates can become mul-

Mo

b

_Eza ~. Aatt VP Vpr, (123 tivalued and generally ill defined in the range of interest
0<|zl<|Z].
- - &(5 —E) Let r, denote the distance vector to points lying on the
(Vo) = _L;b'Vpa_Lbb'Vpb_XoemaZ—tb surfacez=¢. We haver = (x,y,{) so that
ar ar
b b ¢ L
- dr,=—dx+——dy. (A3)

_GfEa 2 3Abff/ :foerf . (122) IX ay

=a f'=a

From Fig. 5 it is clear that by considering two neighboring
The difference between these equations and the standard fgreints onz=0 at x and x+dx separated by the distance
mulation is now extreme. Wheg=0O(e¢), any estimates of dr,=xdx/h,, then
how the saturation levels are changing that do not include the
guadratic-force terms could easily be in error by an order of L(x,y)z+ dr =dro+{(x+ dx,y)z(x+dx,y) (A4)



4298 S. R. PRIDE AND E. G. FLEKKQY PRE 60

-, 02 A dn =—dx My, (A16)
z+5 X/, (A5) ay

_dx
hy

X+ +&§d
X §&x

where terms ofO(dx?) have been neglected becaubeis  Thus, with the second fundamental form written as
an infinitesimal. For curvilinear coordinates we have

. —dr,-dn=edx+2fdx dy+gdy?, (A17)
gz 1 dhy.
ox h_i 2t (A8)  the coefficients, f, andg are defined as
so that arg an_ o,
ez—a— 0,‘— 2 -n, (A18)
o, 1 ¢ oh, A+(9§A A7 X OX X
ax  hy h, 9z <" ox> (A7)

_arg an_ oty ALS
arg 1 £ dhy) . agA (A8) T X ay axay o (AL9)
ay h, hy, dz y+ ay”

: , : g on _ g
which are the two key vectors that will be needed in what g=——-— = (A20)
follows. Note that the metrical coefficients and the deriva- ay oy ay
tives with respect ta are all evaluated on the initial plane
z=0 both here and throughout. We have used that dr,-dn=n- d2rZ becausen-dr,=0. It

In differential geometry[19], the surface properties can is easier to take a second derivativergrthan to differenti-
be defined in terms of the coefficients of the two “funda- aten. Thus, upon taking the second derivative we obtain the
mental forms.” The first fundamental form defines the infini- rather complicated expressions #&rf, andg,
tesimal distance along the surface and is thus written

1 h 1 oh, h,
dr,- dr,= EdX+ 2F dx dy+ Gdy?, (A9) pe| L _L My 9L L dhy 01 ¢d
hy h§ az | ox h2 X  oX h2 9z
where the coefficients are defined as )
. 1 oh, 9¢ 1 ¢ oh,\"a¢ hy ah,
g e L[ goh? (ag) he oz ax| \h hZoz) aynzay
E=o ax e\t h o) Tl A0 " " "
1 ¢anh[1 ¢ oh
_drg arg_aLag + hy n2 oz \my T rE oz
(A11) x o T y o Ty

ax ay  dax dy’
(A21)

_org a1 £ dhy\? [a7\?

The second fundamental form of the surface! is defined Df=
—dr,-dn, wheren is the unit normal defined as

Loh (& ohy
hZ2ay  ay\p2 oz

a1 IxX ar 1 dy 1 ¢ ohy ag ¢ ahy\ahy
= . (A13) R Bt A e e
|ar (19xXdr 19y hy h2 dz oy h2 h, 9z ax
Upon carrying out the cross products, we obtain +i(9_§‘9_hy . i_i&_hx i_ia_hy P
£ oh, ¢ ohy) . h§ X 9z hy h2 dz |\ hy hf, Jz | axay’
hthDn (1—h 02)(1—h—E)Z (A22)
¢ ohy\ L. . X agﬁ
AR Lt YN ENEE L TN
z z
(A14) h; Y| hg oy Y\ hy
2
where the coefficienD is defined as + Lohyog) |1 & dhy| df he dhy
h2 dz dy hy nh2 dz | dxnp2 dx
D2=EG—F2 (A15) ’ ’
, . 1 ¢oh\[1  dhy
Thus,n has been defined solely in termstgf, hy, and{. A i el | I b
change inn alongz={(x,y) is given by y hy 9z x hy Jz
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#¢ 11 ¢ ohy)|oh,
ot amml

_+_
ay? h§ hy h§ Jz

The above results are exact to this point.

The mean curvature Ki) is defined at each point of the

surfacez={(x,y) as H({)ER;1+ R;l, whereR, andR,
are the radius of curvatures in tixeandy directions. It is
expressible in terms of the coefficieris E, F, G, €, f, g of
the two fundamental forms 449]

(Eg—2Ff+Ge)

H(o)=- —

(A24)

This expression is too complicated to write out explicitly in

terms ofh,, h,, and{.

However, in this paper, we only need the properties of the
surfacesz=0 andz=e{, wheree is taken as a very small
parameter. Wherz=0 (i.e., {=0), the above expressions

give the normal and tangential vectors as

n0)=z t(0)=x, t,(0)=y, (A25)

and the mean curvature as
H(O)=Hy= — = M T 7y A26
(0)=H, he oz h, oz (A26)

TWO-PHASE FLOW THROUGH POROUS MEDIA IN TH. ..

4299

Whenz= €{ and when terms only to first order inare kept,
the normal and tangential vectors become

a . L

n(el)=z—eV{, where Vg=§<hx5+yhywy

. aL. . ol
ty(el)=x+ th&Z, t(el)=y+ ehywz, (A27)

while the mean curvature becom@sdter some algebya
H(el)=Ho,—e(V?{+£0).

In the normal coordinates, the Laplacian is defined

(A28)

a(hxag) a(hyag
_ — — +_ —_
ax\hy ox| ady\h, dy
while the coefficient is defined

1 dh,\? [ 1 ohy\?
—_— + —_

h, 9z hy dz

V2{=h,h,

|

2=

(A30)

These are th®(e€) results required in this paper. By setting
h,=hy=1 throughout the above, we obtain the results for
displacement from an initially flat interface.
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